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1. ADDITIONAL ILLUSTRATIONS

Figure S1 illustrates the process of Query Performance Prediction (QPP) in a Content-based Image
Retrieval (CBIR) system. Given a dataset of images, a descriptor extracts a feature for each image.
Different feature extraction models can be used, from hand-crafted (e.g., color, texture, shape)
to deep learning ones (e.g., Convolutional Neural Networks and Vision Transformers). The
descriptor also computes the distance between these images originating ranked lists. This work
employed the Euclidean distance. A ranked list is a structure that, for a given query image, sorts
the most similar images in descending order of similarity. These ranked lists provide different
effectiveness based on the extraction model used. Given a ranked list, the QPP approach predicts
a score that estimates its quality. To compute the QPP for a descriptor, each image in the dataset is
treated as a query. The average result then serves as an effectiveness estimation for that descriptor.
The higher the score, the better the expected effectiveness.
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Fig. S1. Workflow illustrating the steps for computing an effectiveness estimation (QPP) mea-
sure for image retrieval.

2. ADDITIONAL RESULTS

Table S1 presents an expanded version of the results for the Flowers [1] and Corel5k [2] datasets,
including additional descriptors and α = 0.80 for the Acc. JacMax measure. The Pearson
correlation between the Mean Average Precision (MAP) and the effectiveness estimation measures
was reported for the proposed approach and three baselines: Authority [3], Reciprocal [4], and
Deep Rank Noise Estimator (DRNE) [5]. Note that DRNE values are only available for the Flowers
dataset, as the DRNE paper did not include results for the Corel5k dataset. Gray highlights the
best value per row, and bold highlights the best value of the proposed measure (Acc. JacMax).
The descriptors are sorted by their original MAP, demonstrating that higher correlation values



are typically found in descriptors with high effectiveness and vice versa. It is noteworthy that the
proposed approach achieved the best results in most cases. It also demonstrates that Acc. JacMax
is robust to variations in the parameter α, with α = 0.95 and α = 0.90 likely being close to the
optimal choice in most situations.

Table S1. Pearson correlation (between MAP and QPP, the higher the better) for our proposed
approach compared to baselines on Flowers and Corel5k datasets. Gray highlights the best
value per row, and bold highlights the best value of the proposed measure (Acc. JacMax).

Datasets Descriptors
Original Baselines Acc. JacMax (Ours)

MAP Auth. [3] Recip. [4] DRNE [5] α = 1 α = 0.99 α = 0.95 α = 0.90 α = 0.80

Flo
wer

s

CNN-FBResNet [6] 52.56% 0.73744 0.67153 0.79920 0.79971 0.81825 0.85141 0.84601 0.80387

CNN-ResNeXt [7] 51.91% 0.76568 0.66525 0.79265 0.81018 0.82847 0.86458 0.86125 0.81776

CNN-ResNet [6] 51.83% 0.72981 0.63672 0.79903 0.78955 0.80859 0.84203 0.83306 0.77900

CNN-Xception [8] 47.31% 0.74365 0.64060 0.76958 0.77405 0.79445 0.84027 0.84046 0.79514

CNN-AlexNet [9] 46.04% 0.46586 0.35353 0.63521 0.57404 0.61838 0.69974 0.70822 0.66950

CNN-SENet [10] 43.16% 0.58722 0.57195 0.63076 0.62609 0.64647 0.68539 0.67083 0.61455

CNN-InceptRN [11] 42.20% 0.62725 0.53364 0.55041 0.66704 0.67726 0.69233 0.67876 0.63954

CNN-BnVGGNet [12] 41.87% 0.48524 0.36175 0.63133 0.59161 0.62697 0.69856 0.70519 0.66306

CNN-NASNetLg [13] 40.74% 0.63091 0.55103 0.54974 0.65723 0.66711 0.67673 0.65818 0.61168

CNN-VGGNet [12] 39.05% 0.50498 0.32844 0.63850 0.61308 0.65163 0.72334 0.72956 0.68988

SIFT [14] 28.47% 0.34815 0.31624 0.48026 0.44652 0.48238 0.55495 0.56620 0.54478

SPJCD [15, 16] 22.56% 0.27962 0.24767 0.33553 0.33251 0.35104 0.40788 0.43425 0.43471

SPCEDD [16, 17] 21.94% 0.31110 0.26055 0.34731 0.36155 0.38084 0.43446 0.45146 0.43906

COMO [18] 21.83% 0.10506 0.08213 0.25892 0.15345 0.18135 0.25700 0.28658 0.29025

SPFCTH [16, 19] 21.73% 0.19618 0.18878 0.26632 0.24354 0.26151 0.31856 0.35007 0.35978

JCD [15] 21.43% 0.15319 0.11306 0.24018 0.18774 0.20256 0.24853 0.27256 0.27445

FCTH [19] 20.56% 0.18428 0.13488 0.23862 0.21393 0.22587 0.26483 0.28575 0.28750

CEDD [17] 20.37% 0.13077 0.10192 0.20104 0.15773 0.17221 0.21587 0.23871 0.24583

SPACC [16, 20] 19.20% 0.07436 0.03312 0.20229 0.14722 0.18318 0.29400 0.34779 0.36244

ACC [20] 18.99% 0.03264 0.02153 0.28373 0.11935 0.15978 0.27446 0.32457 0.33329

PHOG [16, 21] 15.47% 0.33586 0.33548 0.37418 0.33371 0.34181 0.37008 0.39126 0.40979

EHD [22] 12.56% 0.03510 0.06457 0.20214 0.07389 0.09381 0.17720 0.25335 0.32491

SPLBP [16, 23] 11.26% 0.06942 0.07869 0.14425 0.08773 0.10019 0.14908 0.19222 0.23649

LBP [23] 10.34% 0.01482 0.02083 0.07323 0.02800 0.03239 0.05366 0.07740 0.10508

SCD [24] 10.25% 0.25619 0.10035 0.05702 0.27886 0.27424 0.25204 0.22785 0.19472

Average 29.35% 0.35219 0.29657 0.42006 0.40273 0.42323 0.47388 0.48928 0.47708

Core
l5k

CNN-ResNet [6] 64.86% 0.84968 0.81174 — 0.84720 0.85176 0.83879 0.80230 0.73602

CNN-FBResNet [6] 64.25% 0.85457 0.80835 — 0.85130 0.85604 0.84728 0.81674 0.75870

CNN-InceptRN [11] 61.31% 0.80549 0.81055 — 0.79166 0.79247 0.76302 0.71192 0.64129

CNN-ResNeXt [7] 62.45% 0.87020 0.82547 — 0.86710 0.87148 0.85955 0.82470 0.76234

CNN-SENet [10] 57.10% 0.78353 0.82476 — 0.78396 0.78806 0.76699 0.72028 0.65412

CNN-Xception [8] 54.60% 0.87838 0.84928 — 0.87071 0.87368 0.85464 0.81626 0.75233

CNN-NASNetLg [13] 53.78% 0.81245 0.84444 — 0.82735 0.83450 0.81993 0.77578 0.71019

CNN-BnVGGNet [12] 52.82% 0.82058 0.78008 — 0.83687 0.84614 0.85010 0.82639 0.77086

CNN-VGGNet [12] 47.99% 0.80709 0.77088 — 0.82886 0.83869 0.83907 0.81165 0.75505

CNN-AlexNet [9] 37.89% 0.67625 0.72093 — 0.73486 0.75387 0.76378 0.72285 0.64486

SPCEDD [16, 17] 28.98% 0.68519 0.67809 — 0.73346 0.74562 0.76306 0.74719 0.69659

SPJCD [15, 16] 28.30% 0.68950 0.69116 — 0.73979 0.75044 0.76490 0.74741 0.69283

SPFCTH [16, 19] 26.68% 0.64710 0.64830 — 0.70244 0.71438 0.73341 0.72064 0.67298

JCD [15] 25.01% 0.76185 0.70122 — 0.81234 0.81735 0.81204 0.78133 0.71018

FCTH [19] 24.19% 0.74485 0.68045 — 0.79078 0.79604 0.79296 0.76289 0.69111

SPACC [16, 20] 24.11% 0.65464 0.55990 — 0.70161 0.71784 0.73828 0.72216 0.67593

ACC [20] 23.70% 0.72589 0.64916 — 0.77260 0.78447 0.79393 0.76618 0.69778

CEDD [17] 23.29% 0.70728 0.63540 — 0.76847 0.77598 0.77307 0.73785 0.65865

COMO [18] 21.30% 0.65908 0.56197 — 0.70781 0.71315 0.70198 0.66650 0.59797

EHD [22] 17.03% 0.60975 0.57463 — 0.64772 0.65978 0.67819 0.66838 0.62481

PHOG [16, 21] 16.07% 0.41810 0.38642 — 0.45532 0.48034 0.54862 0.57446 0.57009

SPLBP [16, 23] 15.74% 0.49790 0.49686 — 0.55106 0.56733 0.60112 0.60245 0.57407

LBP [23] 15.13% 0.49217 0.37729 — 0.54693 0.55824 0.57333 0.56229 0.52252

SCD [24] 14.91% 0.50915 0.41427 — 0.53831 0.54961 0.56755 0.55750 0.51647

SIFT [14] 12.97% 0.52773 0.51391 — 0.37515 0.40413 0.45880 0.47267 0.47119

Average 34.98% 0.69954 0.66462 — 0.72335 0.73366 0.74018 0.71675 0.66236
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Supporting the paper’s findings, the results were organized into bar graphs to facilitate com-
parison between our approach and baseline methods. Figure S2 presents the Pearson correlation
between MAP and the QPP approaches for the MPEG-7 (Figure S2a) and Brodatz (Figure S2b)
datasets. The red bar represents the Acc. JacMax, showing the results for the best α value reported
in the tables. The results were reported for the Regression for Query Performance Prediction
Framework (RQPPF) [25] considering its two variants: “RQPPF + A” and “RQPPF + R”, which
considered Authority and Reciprocal for computing its meta-features, respectively. For MPEG-
7 [26], although the Accumulated Jaccard Max did not yield the best results, it remains highly
competitive among the baseline measures, suggesting its potential for shape descriptors. Con-
versely, the Brodatz [27] dataset highlights the superior performance of the proposed measure,
underscoring its effectiveness for texture descriptors.
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(a) MPEG-7 dataset.
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(b) Brodatz dataset.

Fig. S2. Bar graphs showing the Pearson correlation between MAP and various QPP ap-
proaches, including baselines and our proposed measure (Acc. JacMax).

Aiming to visually compare the correlation of the proposed approach with MAP concerning
baselines, Figures S3, S4, and S5 present visualizations for the datasets Flowers [1], Corel5k [2],
and Soccer [28], respectively. For each dataset, there is a plot for (a) Authority [3]; (b) Reciprocal [4];
and (c) our proposed Acc. JacMax. In each graph, each point corresponds to a ranked list. The
MAP values of the ranked lists are presented on the x-axis, and the effectiveness estimation values
are on the y-axis. All the measures exhibit an approximately linear and positive behavior. The
higher the correlation, the more linear the behavior tends to be, which is indicated by the Pearson
correlation. In all cases, our proposed measure outperformed the baselines. For the Corel5k
and Soccer datasets, represented by Figures S4 and S5, despite the Authority Score achieving
similar results to the Accumulated JaccardMax, our measure yielded better results than Authority,
considering the Pearson correlation value.
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(a) Authority score vs. MAP.
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(b) Reciprocal score vs. MAP.

0.2 0.4 0.6 0.8 1.0
MAP

0.05

0.10

0.15

0.20
Ac

cu
m

ul
at

ed
 Ja

cc
ar

dM
ax

Pearson: 0.84203

(c) Ours: Acc. JaccardMax (α = .95) vs. MAP.

Fig. S3. Correlation of MAP and QPP measures on Flowers dataset with ResNet descriptor.
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(a) Authority score vs. MAP.
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(b) Reciprocal score vs. MAP.
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(c) Ours: Acc. JaccardMax (α = .99) vs. MAP.

Fig. S4. Correlation of MAP and QPP measures on Corel5k dataset with ResNeXt descriptor.
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(c) Ours: Acc. JaccardMax (α = .95) vs. MAP.

Fig. S5. Correlation of MAP and QPP measures on Soccer dataset with ACC descriptor.

Figure S6 presents ranked lists to illustrate the prediction of the Accumulated JaccardMax mea-
sure compared to the MAP. The examples are shown for Flowers [1] (Figure S6a) and Soccer [28]
(Figure S6b) datasets. Query images are highlighted in green, while images from different classes
than the query are highlighted in red. For each dataset, a good query and a bad query were
selected. Notice that the proposed measure exhibits a higher score for lists with a higher MAP,
and vice versa. However, the scale of the values varies depending on the dataset.

Ranked list with  and 

Ranked list with  and 

(a) Ranked lists for Flowers dataset with ResNet descriptor.

Ranked list with  and 

Ranked list with  and 

(b) Ranked lists for Soccer dataset with ACC descriptor.

Fig. S6. Examples of ranked lists (good and bad queries) along with their Mean Average Preci-
sion (MAP) values and Accumulated JaccardMax scores.
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3. CODE AND IMPLEMENTATION

The code of the proposed approach (Accumulated Jaccard Max) will be made available upon
acceptance of the manuscript. Regarding baselines, the Authority [3] and Reciprocal [4] were exe-
cuted considering a publicly available implementation [29]: UDLF/USRF/blob/main/effectiveness_
estimation_functions.py.

REFERENCES

1. M.-E. Nilsback and A. Zisserman, “A Visual Vocabulary for Flower Classification,” in
2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Volume 2
(CVPR’06), vol. 2 (IEEE, New York, NY, USA, 2006), pp. 1447–1454.

2. G.-H. Liu and J.-Y. Yang, “Content-based image retrieval using color difference histogram,”
Pattern Recognit. 46, 188–198 (2013).

3. D. C. G. Pedronette, O. A. Penatti, and R. da S. Torres, “Unsupervised manifold learning
using reciprocal knn graphs in image re-ranking and rank aggregation tasks,” Image Vis.
Comput. 32, 120 – 130 (2014).

4. D. C. G. Pedronette, O. A. B. Penatti, R. T. Calumby, and R. da Silva Torres, “Unsupervised
distance learning by reciprocal knn distance for image retrieval,” in International Conference on
Multimedia Retrieval, ICMR ’14, Glasgow, United Kingdom - April 01 - 04, 2014, M. S. Kankanhalli,
S. M. Rüger, R. Manmatha, et al., eds. (ACM, 2014), p. 345.

5. L. P. Valem and D. C. G. a. Pedronette, “A denoising convolutional neural network for
self-supervised rank effectiveness estimation on image retrieval,” in Proceedings of the 2021
International Conference on Multimedia Retrieval, (Association for Computing Machinery, New
York, NY, USA, 2021), ICMR ’21, p. 294–302.

6. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2016), pp. 770–778.

7. S. Xie, R. Girshick, P. Dollár, et al., “Aggregated residual transformations for deep neural
networks,” in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2017),
pp. 5987–5995.

8. F. Chollet, “Xception: Deep learning with depthwise separable convolutions,” in 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), (2017), pp. 1800–1807.

9. A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolu-
tional neural networks,” in Advances in Neural Information Processing Systems, vol. 25 F. Pereira,
C. Burges, L. Bottou, and K. Weinberger, eds. (Curran Associates, Inc., 2012).

10. J. Hu, L. Shen, S. Albanie, et al., “Squeeze-and-excitation networks,” IEEE Transactions on
Pattern Analysis Mach. Intell. 42, 2011–2023 (2020).

11. C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4, inception-resnet and the
impact of residual connections on learning,” in Proc. of the 31st AAAI Conference on Artificial
Intelligence, (AAAI Press, 2017), AAAI’17, p. 4278–4284.

12. S. Liu and W. Deng, “Very deep convolutional neural network based image classification
using small training sample size,” in 2015 3rd IAPR Asian Conference on Pattern Recognition
(ACPR), (2015), pp. 730–734.

13. B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transferable architectures for
scalable image recognition,” in 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, (2018), pp. 8697–8710.

14. D. Lowe, “Object recognition from local scale-invariant features,” in Proceedings of the Seventh
IEEE International Conference on Computer Vision, vol. 2 (1999), pp. 1150–1157 vol.2.

15. K. Zagoris, S. A. Chatzichristofis, N. Papamarkos, and Y. S. Boutalis, “Automatic Image
Annotation and Retrieval Using the Joint Composite Descriptor,” in 2010 14th Panhellenic
Conference on Informatics, (2010), pp. 143–147.

16. M. Lux, “Content based image retrieval with LIRe,” in Proceedings of the 19th ACM interna-
tional conference on Multimedia, (ACM, Scottsdale Arizona USA, 2011), pp. 735–738.

17. S. A. Chatzichristofis and Y. S. Boutalis, “Cedd: Color and edge directivity descriptor: A
compact descriptor for image indexing and retrieval,” in Computer Vision Systems, A. Gaster-
atos, M. Vincze, and J. K. Tsotsos, eds. (Springer Berlin Heidelberg, Berlin, Heidelberg, 2008),
pp. 312–322.

18. S. A. Vassou, N. Anagnostopoulos, A. Amanatiadis, et al., “CoMo: A Compact Compos-
ite Moment-Based Descriptor for Image Retrieval,” in Proceedings of the 15th International
Workshop on Content-Based Multimedia Indexing, (ACM, Florence Italy, 2017), pp. 1–5.

6

UDLF/USRF/blob/main/effectiveness_estimation_functions.py
UDLF/USRF/blob/main/effectiveness_estimation_functions.py


19. S. A. Chatzichristofis and Y. S. Boutalis, “FCTH: Fuzzy Color and Texture Histogram - A
Low Level Feature for Accurate Image Retrieval,” in 2008 Ninth International Workshop on
Image Analysis for Multimedia Interactive Services, (2008), pp. 191–196. ISSN: 2158-5881.

20. Jing Huang, S. Kumar, M. Mitra, et al., “Image indexing using color correlograms,” in
Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
(IEEE Comput. Soc, San Juan, Puerto Rico, 1997), pp. 762–768.

21. N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” in 2005
IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), vol. 1
(2005), pp. 886–893 vol. 1.

22. B. Manjunath, J.-R. Ohm, V. Vasudevan, and A. Yamada, “Color and texture descriptors,”
IEEE Transactions on Circuits Syst. for Video Technol. 11, 703–715 (2001).

23. T. Ojala, M. Pietikainen, and T. Maenpaa, “Multiresolution gray-scale and rotation invariant
texture classification with local binary patterns,” IEEE Transactions on Pattern Analysis
Mach. Intell. 24, 971–987 (2002).

24. L. Cieplinski, “Mpeg-7 color descriptors and their applications,” in Computer Analysis of
Images and Patterns, W. Skarbek, ed. (Springer Berlin Heidelberg, Berlin, Heidelberg, 2001),
pp. 11–20.

25. L. Valem, V. Pereira-Ferrero, and D. Pedronette, “Self-supervised regression for query perfor-
mance prediction on image retrieval,” in 2023 IEEE Sixth International Conference on Artificial
Intelligence and Knowledge Engineering (AIKE), (IEEE Computer Society, Los Alamitos, CA,
USA, 2023), pp. 95–98.

26. L. Latecki, R. Lakamper, and T. Eckhardt, “Shape descriptors for non-rigid shapes with
a single closed contour,” in Proceedings IEEE Conference on Computer Vision and Pattern
Recognition. CVPR 2000 (Cat. No.PR00662), vol. 1 (2000), pp. 424–429 vol.1. ISSN: 1063-6919.

27. P. Brodatz, Textures: A Photographic Album for Artists and Designers, Dover books on art,
graphic art, handicrafts (Dover Publications, 1966).

28. J. Van De Weijer and C. Schmid, “Coloring Local Feature Extraction,” in Computer Vision –
ECCV 2006, vol. 3952 A. Leonardis, H. Bischof, and A. Pinz, eds. (Springer Berlin Heidelberg,
Berlin, Heidelberg, 2006), pp. 334–348.

29. L. P. Valem and D. C. G. Pedronette, “Unsupervised selective rank fusion for image retrieval
tasks,” Neurocomputing 377, 182–199 (2020).

7


	Additional Illustrations
	Additional Results
	Code and Implementation

