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Abstract

Several visual features have been developed for content-based image retrieval
in last decades, including global, local and deep learning based approaches.
However, despite the huge advances on features development and mid-level
representations, a single visual descriptor is often insufficient to achieve effec-
tive retrieval results in several scenarios. Mainly due to the diverse aspects
involved in human visual perception, the combination of different features
has been establishing as a relevant trend in image retrieval. An intrinsic dif-
ficulty consists in the task of selecting the features to combine, which is often
supported by supervised learning approaches. Therefore, in the absence of
labeled data, selecting features in an unsupervised way is a very challeng-
ing, although essential task. In this paper, an unsupervised framework is
proposed to select and fuse visual features in order to improve the effective-
ness of image retrieval tasks. The framework estimates the effectiveness and
correlation among features through a rank-based analysis and use a list of
ranker pairs to determine the selected features combinations. High-effective
retrieval results were achieved through a comprehensive experimental eval-
uation conducted on 5 public datasets, involving 41 different features and
comparison with other methods. Relative gains up to +55% were obtained
in relation to the highest effective isolated feature.
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1. Introduction

The quick development of visual acquisition technologies and the huge
growth of image and multimedia collections have made the use of retrieval
and computer vision techniques indispensable. Relevant applications have
been proposed in many different associated fields, from text detection in
images with complex backgrounds [89] to automatic generation of natural
language sentences which summarize the video contents [88]. In this sce-
nario, Content-Based Image Retrieval (CBIR) systems can be broadly de-
fined as any technology which helps to organize images based on their visual
content [19]. The most common application consists in retrieving the most
similar images to a query image in a given dataset.

Many significant progress have been made in related CBIR areas over
the last decades [19, 38, 102]. However, despite the significant recent ad-
vances specially in feature extraction methods, effectively retrieving images
still remains a challenge in various scenarios. Such complexity is mainly asso-
ciated to the diverse aspects involved in the human visual perception, which
usually can not be encoded by a single visual feature [34, 67]. Images are of-
ten composed by complex foregrounds and backgrounds, which makes image
understanding techniques a hot research topic and a challenging task [87].
Although deep learning approaches have been producing very significant re-
sults, the state-of-art is not reached in all situations [83], turning the selection
and combination of different visual features an attractive alternative.

Given the myriad of available visual descriptors, several fusion approaches
have been recently proposed [2, 7, 67, 80, 95] aiming at producing more
effective retrieval results. Fusion strategies are typically categorized in two
different categories: early and late fusion [3, 70], according to the step of the
retrieval pipeline where the similarity obtained from different visual features
are combined. While early fusion is usually used to combine raw features
(e.g. concatenation), late fusion combines different types of representations
obtained from the feature vectors (e.g. ranked lists). Recently, relevant
unsupervised late fusion methods have been proposed in the literature [101],
mainly supported by graph-based approaches [63, 95, 98].

Despite the success of fusion approaches, other crucial task consists in to
select what features to combine. In fact, among the great variety of visual
features current available, the task of choosing one combination that best
fits the need for a given retrieval scenario is a very challenging task [67].
It is known that, finding the optimal combination of ranked lists produced
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by different features is a NP-hard problem [22]. Therefore, optimization
strategies as genetic programming approaches [17, 24] represent an attractive
solution.

Mainly due to the possibility of exploiting the labeled data in order to in-
fer the effectiveness of each visual feature, most of selection methods require
training data [9, 67]. In this scenario, various supervised feature selection ap-
proaches have been proposed [67]. However, even using supervised learning
methods to exploit labeled data, selecting high-effective combinations of vi-
sual features remains a complex task, since it is necessary to consider various
aspects, as diversity and complementarity of retrieval results.

Therefore, selecting features in an unsupervised way, without any la-
beled data is even challenger, since no information about effectiveness of
individual visual features is available. In several unsupervised late fusion
scenarios [64, 95], the selection of visual features is often performed ad hoc.
Unsupervised feature selection methods [10, 27, 41, 93, 96] based on early
fusion strategies [67] can represent an alternative. However, some drawbacks
can harm its use in retrieval scenarios, since some methods are very sensible
to sparse vectors and they are computationally costly.

In the other hand, unsupervised selection approaches based on late fusion
strategies are very scarce in the literature. Some initial selective approaches
have been proposed, mainly driven through the task of assigning weights to
each visual feature in an unsupervised way [7, 63, 98]. However, there is a
lack of unsupervised approaches based on late fusion which explicitly selects
the visual features in image retrieval scenarios.

In this paper, we aim at filling this gap. We address this problem by
proposing a novel unsupervised framework to select and fuse visual features
in order to improve the effectiveness of image retrieval tasks. The proposed
framework uses a late fusion strategy supported by rank-based effectiveness
estimation measures, which are used to identify the most effective visual fea-
tures. Additionally, rank correlation measures are used for analyzing com-
plementarity among features. Based on both effectiveness and correlation
properties, a list of pairs of visual features is computed and used to deter-
mine the selected combination.

The main contributions of the proposed approach in face of the related
work are highlighted as follows:

• A completely unsupervised rank-based framework for selecting and fus-
ing visual features in image retrieval scenarios. The selection is per-
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formed based on the analysis of top-k retrieval results, requiring low
computational costs in comparison with diffusion process [7];

• Different from related late-fusion methods[7, 63, 98], our approach does
not assign weights, but explicitly selects the features, favoring the se-
lection in scenarios with larger sets of features;

• The density of reciprocal rank references [59, 65] is exploited to esti-
mate the effectiveness of features and rank correlation measures [53]
to encode complementarity information. Since only rank information
is required, the framework is flexible, being independent of distance
functions and allowing the use of different measures.

A comprehensive experimental evaluation was conducted on five public
datasets, involving 41 visual features, among global, local and CNN-based
features. The proposed approach was also evaluated in different retrieval
scenarios, compared with baselines and other state-of-the-art retrieval meth-
ods. High-effective retrieval results were obtained, yielding relative gains up
to +55% in relation to the best-isolated feature. The results are comparable
or superior to various state-of-the-art retrieval approaches, even when the
compared methods use ad-hoc pre-selection of features.

The remaining of this paper is organized as follows: Section 2 presents the
formulation of the rank retrieval model considered, while Section 3 presents
the proposed selection and fusion framework. Section 4 reports the exper-
imental evaluation results. Finally, Section 5 draws the conclusions and
possible future work.

2. Rank Model and Problem Setting

This section formally defines the rank model used along the paper. Let
C={x1, x2, . . . , xN} be an image collection, where N denotes the collection
size. Let us consider a retrieval task where, given a query image, returns a
list of images from the collection C.

Formally, given a query image xq, a ranker denoted by Rj computes a
ranked list τq=(x1, x2, . . . , xk) in response to the query. The ranked list τq can
be defined as a permutation of the k-neighborhood set N (q), which contains
the k most similar images to image xq in the collection C. The permutation
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τq is a bijection from the set N (q) onto the set [k] = {1, 2, . . . , k}. The τq(i)
notation denotes the position (or rank) of image xi in the ranked list τq.

The ranker R can be defined based on diverse approaches, including fea-
ture extraction or learning methods. In this paper, a feature-based approach
is considered, defining R as a tuple (ε, ρ), where ε : C → Rd is a function that
extracts a feature vector vx from an image x ∈ C; and d: Rd × Rd → R is a
distance function that computes the distance between two images according
to their corresponding feature vectors. Formally, the distance between two
images xi, xj is defined by d(ε(xi), ε(xj)). The notation d(xi, xj) is used for
readability purposes.

A ranked list can be computed by sorting images in a crescent order of
distance. In terms of ranking positions we can say that, if image xi is ranked
before image xj in the ranked list of image xq, that is, τq(i) < τq(j), then
d(q, i) ≤ d(q, j). Taking every image in the collection as a query image xq, a
set of ranked lists T = {τ1, τ2, . . . , τn} can be obtained.

Different features and distance functions give rises to different rankers
which, in turn, produce distinct ranked lists. Let R = {R1, R2, . . . , Rm} be
a set of rankers and Rj ∈ R, we denote by Tj the set of ranked lists produced
by Rj. A ranked list computed by the ranker Rj in response to a query xq is
denoted by τj,q.

The objective of the proposed selection framework is to select from the
set R the rankers which produces the most effective retrieval results, based
on their respective set of ranked lists, without the need of any labeled data.
Formally, the framework can be defined by a set function fs as follows:

X∗n = fs(T1, T2, . . . , Tm), (1)

where X∗n denotes the set of rankers selected by the framework for a given
size n, such that |X∗n| = n

3. Unsupervised Selective Rank Fusion

This section describes the proposed Unsupervised Selective Rank Fusion
(USRF) method. The main motivation of the proposed approach consists
in to select and combine a set of rankers in a completely unsupervised way,
considering scenarios where several visual features are available and there
are no labeled data or feedback from the user. Figure 1 presents a diagram
which illustrates the use of the USRF method, in terms of its input and
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output data. Given an image dataset, it shows that rankers based on differ-
ent approaches can be used (color descriptors, bag of words representations,
convolutional neural networks, and others) with the intent of exploiting the
complementarity of the data and producing more effective retrieval results.

Image Dataset:

KeyPoints SIFT 

Vocabulary Histogram

Global Color Descriptor Bag of Visual WordsConvolution Neural Networks 

Ranker R1 Ranker R2 Ranker Rm

Unsupervised Selective Rank Fusion - USRF Fused Retrieval Results:

Figure 1: General view of the use of USRF method.

Let R = {R1, R2, ..., Rm} denotes a set of m different rankers. The Carte-
sian production R2 = R × R defines a set of all of the possible unordered
pairs {Ri, Rj} ∈ R2 of rankers. In this work, we consider not only pairs, but
sets of combinations composed of two or more rankers. Therefore, we can
generalize the set of ranker combinations for different sizes as:

Rn =
n∏
1

R, (2)
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which contains all the combinations with size n. The full set of possible
combinations available for the USRF selection is given by the union of all
combinations with different sizes. Formally, we can define the search space
represent by the full set of combinations S as:

S = ∪mi=1R
i. (3)

For the ease of the reader, Table 1 summarizes the symbols used through
the definition of our approach (some of them will be discussed in details in
next sub-sections).

Table 1: Table of symbols

Type Symbol Description

Retrieval

C Image collection.

Model

N (q, k) Neighborhood set for a query image q of size k.
τq Ranked list for the query image q.
τq(j) Position of the image j in the ranked list of the image q.
L Size of the ranked lists.
T Set of ranked lists for all the images in the dataset.

Selection

fs Function for ranker selection.

Model

Ri Ranker of index i.
τi,q Ranked list of the image q computed by the ranker i.
Ti Set of ranked lists produced by the ranker Ri.
R Set of rankers used as input for the USRF.
m Size of the set R.
S Selection set for all the available combinations of rankers.
Xn Candidates of rankers combination of size n.
X∗n Combination of size n selected by the USRF.
Cn Set of combinations where each combination is of size n.
τRn List of all the combinations of size n sorted by the selection measure.

τRn (Xi
n) Position of the combination Xi

n in τRn .
LR Size of the ranked combinations list τRn .

For a given search space S, and combination size n, we aim at selection
a combination X∗n. In such unsupervised scenario, the most challenging
aspects associated to the selection of visual features can be summarized as:

(i) Computation cost: the computational cost to evaluate all the com-
binations is often prohibitive;

(ii) Lack of Information: there is absolutely no information about the
quality of visual features. Therefore, it is not possible to learn a selec-
tion function capable of evaluate rankers based on training data.

Such challenges are addressed by the proposed USRF method based on
two key ideas:
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(i) Selection Based on List of Pairs: while the set of all the combina-
tions S is huge (even for a small input size |R|), the number of combi-
nations given by unordered pairs R2 grow much more slowly. Based on
this observation, we derive a broadly selection combination based on
a selection of pairs or rankers, drastically reducing the computational
efforts required.

(ii) Unsupervised Selection Measure: since our approach performs the
selection based on pairs, an unsupervised selection measure is proposed
in order to identify the most promising ranker pairs to be combined.
Firstly, the proposed measure exploits unsupervised effectiveness mea-
sures to obtain an approximation of quality of visual features. Such
measures are based on the density of ranking references at top posi-
tions of retrieval results, which requires no training data. In addition,
rank correlation measures are also computed for each pair, evaluating
similarity and complementarity among retrieval results.

3.1. Overall Organization of USRF

Figure 2 illustrates the overal organization of USRF, highlithing its main
steps (1 to 4) and the sequence in which they occur. The method input
consists in sets of ranked lists (R) computed by different visual features
(showed at the top of the figure).

In step (1), an effectiveness estimation is computed for each ranker, while
in step (2) the correlation measure is computed for each pair of rankers.
Subsequently, a measure is applied with the objective of selecting the best
combination (3), according to the values obtained in (1) and (2). Notice
that the selected combination is denoted by X∗. Finally, in step (4), the
selected rankers are offered as input for the rank-aggregation method, which
computes the final retrieval results. Next subsections discusses each of the
steps in details.

3.2. Unsupervised Effectiveness Estimation

Retrieval approaches are often evaluated based on a quantitative value
given by effectiveness measures (as Precision, Recall, MAP, NDCG), which
are computed based on labeled data. In the unsupervised scenario addressed
in this paper, we propose to exploit effectiveness estimation measures [62,
74, 86], which does not required labeled data.
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1

2

3
4

Unsupervised Selective
Rank Fusion (USRF)

Ranker R1 Ranker R2 Ranker Rm

Effectiveness
Estimation Measure

Effectiveness
Estimation Measure

Effectiveness
Estimation Measure

Correlation MeasureCorrelation Measure

Selection Measure
(R1,R2)(R2,R5)(R2,Rm)

Pairs Selection Combination of Rankerswith size n
UnsupervisedRank Aggregation

Figure 2: Illustration of the steps that compose the USRF.

In general, such measures analyzes contextual information, as the re-
lationship among ranking references, in order to provide an estimation of
effectiveness of each ranked list. A real value in the interval [0, 1] is assigned
to each ranked list in the dataset, which is used for providing an effective-
ness estimation of the ranker. Next, we present the effectiveness estimation
measures used in this work.

• Authority Score

The Authority Score [65] is a graph-based effectiveness estimation mea-
sure. The measure uses a graph representing the ranking references at top
positions of ranked lists and estimates the effectiveness according to the den-
sity of the graph. Each image in the top-k positions of the ranked list τq
defines a node. For each image xj in the top-k of τq, the ranked list τj is also
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analyzed. If there are images in common in ranked lists τq and τj, an edge
is created. The authority score is computed based on the number of created
edges. Therefore, the measure is based on the density of the graph and can
be formally defined as follows:

Authority(τq, k) =

∑
u∈N (q,k)

∑
v∈N (u,k) fin(v, q)

k2
, (4)

where fin returns 1 if τq(v) ≤ k and 0 otherwise. The Authority Score is
defined in the interval [0, 1], achieving the greater score for a full connected
graph at top-k positions.

• Reciprocal Density

The Reciprocal Density [59] also exploits the ranking references consider-
ing the density of reciprocal neighbors at top-k positions. A weight is assigned
to the occurrence of each reciprocal neighbor according to its position in the
ranked lists. The formal definition is given by the Equation 5.

Reciprocal(τq, k) =

∑
i∈N (q,k)

∑
j∈N (i,k) fin(j, q)× wr(q, i)× wr(i, j)

k4
, (5)

where a weight is computed to each position according to the function wr(q, i) =
k + 1 − τq(i). The higher the weight, higher tends to be the occurrence of
reciprocal neighbors in the first positions of the ranked lists.

3.3. Rank Correlation Measures

A retrieval task can benefit from a fusion approach if the inputs being
combined contain diverse and complementary information. Such comple-
mentarity can be analyzed directly based on ranking information, since it
is expected that the top positions of rankings produced by different rankers
contain distinct relevant results.

• Jaccard

The Jaccard index is a statistic measure that computes the correlation
between two ranked lists based on its intersection and is defined by Equa-
tion 6:

J(τi, τj, k) =
|N (u, k) ∩N (v, k)|
|N (u, k) ∪N (v, k)|

, (6)
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where N (u) and N (v) denote the k-neighborhood sets which contain the
elements of the ranked lists τu and τv, respectively.

• Jaccardk

The traditional Jaccard coefficient performs its analysis at a single depth
defined by k. In this way, the same weight is assigned to all objects at top-k
positions. In [53], a Jaccard score considering different depths is proposed,
assigning higher weights to top positions. This measure is defined by:

Jk(τi, τj, k) =

∑k
d=1 J(τi, τj, d)

k
. (7)

• RBO

The Rank-Biased Overlap (RBO) [82] also considers the overlap between
top-k lists at increasing depths. However, different from the intersection mea-
sure, the weight of the overlap measure is computed based on probabilities
defined at each depth. The RBO measure is defined by:

RBO(τi, τj, k, p) = (1− p)
k∑
d=1

pd−1 × |N (i, k) ∩N (j, k)|
d

, (8)

where p = 0.9 was considered for all the experiments.

• Spearman

The Spearman’s metric is a non-parametric measure, which evaluates the
relationship between two variables. Usually denoted by the letter ρ, it can be
seen as the L1 distance between two permutations, considering the difference
between positions of elements [23]. The measure is formally defined as:

Spearman(τi, τj, k) = 1−
∑

x,y∈N (i,k)∪N (j,k) s(x, y)

2× k2
, (9)

where s(x, y) is the difference between positions computed by:

s(x, y) = |max(k + 1, τx(y))−max(k + 1, τy(x))|. (10)

Notice that we propose to restrict the difference to k positions due to the
pre-processing given by the neighborhood sets.
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• Kendallτ

The Kendall’s τ is a traditional correlation measure between permuta-
tions, computed based on the number of exchanges needed in a bubble sort
to convert one permutation to the other [23]. The measure is commonly used
as a rank correlation measure and can be defined as follows:

Kendallτ (τi, τj, k) = 1−
∑

x,y∈N (i,k)∪N (j,k) K̄x,y(τi, τj)

k × (k − 1)
, (11)

where K̄x,y(τi, τj) is a function that determines if objects ox and oy are in the
same order in top-k lists τi and τj. Formally, the function can be defined as
follows:

K̄x,y(τi, τj) =


0 if (τi(x) 6 τi(y) ∧ τj(x) 6 τj(y)),
0 if (τi(x) > τi(y) ∧ τj(x) > τj(y)),
1 otherwise.

(12)

For the computation of K̄ function, we considered the maximum position
as k (positions bigger than k are set to k + 1).

3.4. Selection Strategy

As previously stated, given a set R composed by m rankers, USRF
searches for the best combinations in the set S = ∪mi=1R

i. We refer to a
combination as a set of two or more rankers, which is denoted by Xi

n, where
i indicates the index and n the size of the combination, respectively.

Section 3.4.1 describes the proposed selection approach for ranker pairs
(conducted on the set R2), while Section 3.4.2 presents the selection for
combinations of different sizes (conducted on the set S) and how it is derived
from the selection of pairs.

3.4.1. Selection of Ranker Pairs

An unsupervised selection measure is proposed, assigning a score for each
pair of rankers through a function wp. The selection measure is based on two
different hypotheses:

1. The higher the effectiveness estimation of a ranker, higher the chances
of it offering an effective result when combined with the others;
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2. The lower the correlation between two rankers, higher the chances of
complementary information, which can be combined to obtain a more
effective result.

Such hypotheses were already exploited in previous work [77], although
requiring labeled data and traditional. In the following, we discuss the selec-
tion performed based on effectiveness, correlation or a combination of them.

• Selection through Effectiveness Estimation

The first hypothesis is based on the idea that a relevant combination is
given by ranked lists of high effectiveness. Let Γ be the effectiveness selection
measure applied to a pair {R1, R2} and γ(Ri) be a function that returns the
effectiveness estimation of ranked lists offered by the ranker Ri. The measure
is defined as:

Γ(R1, R2) = γ(R1)× γ(R2). (13)

Notice that γ(Ri) can refer to any of the measures presented in Sec-
tion 3.2.

• Selection through Correlation

Another hypothesis is that ranked lists with low correlation provide a
potencial way for exploiting the complementarity of the data. Let Λ be the
correlation selection measure and λ(R1, R2) be a function that returns a value
of correlation (similarity in the interval [0, 1]) between the ranked lists offered
by the rankers R1 and R2. The measure is defined by the Equation 14.

Λ(R1, R2) =
1

1 + λ(R1, R2)
. (14)

The function λ(R1, R2) can consider as correlation measure any of the
measures presented in Section 3.3 (Jaccard, RBO, Spearman or Kendallτ ,
for example).

• Joint Selection Measure

The selection measure for pairs of rankers is proposed based on the incor-
poration of the two earlier equations, with the objective of selecting pairs of
high effectiveness and low correlation (high complementarity). The measure
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wp is defined as:

wp({R1, R2}) = Γ(R1, R2)× Λ(R1, R2)
β =

γ(R1)× γ(R2)

(1 + λ(R1, R2))β
, (15)

where the exponent β is used with the intent of applying a weight for the
correlation, which provides the use of the proposed measure in different sce-
narios. Along the experiments, we noticed that for the cases where there
are a high number of rankers, it is more beneficial to use the correlation to
combine ranked lists that are similar. Therefore, β = 1 was adopted for
scenarios with less diversity and β = −1 was adopted for scenarios with
higher dversity, as discussed in more details in the experimental evaluation
(Section 4).

• Pairs Selection

Finally, the ranker pairs can be sorted in a decreasing order of selection
function wp, which can be used to obtain the ranked lists of the pairs denoted
by τR2 . More formally, a ranked pairs list τR2 = (X1

2,X
2
2, ...,X

LR
2 ) can be

defined as a permutation of R2. The permutation τR2 is the bijection of the
set R2 in [LR] = {1, 2, ..., LR}, where LR is a parameter which defines the
maximum size of the permutation. For a permutation τR2 , we consider τR2 (Xi

2)
as the position of Xi

2 in τR2 .
We can say that if τR2 (Xi

2) ≤ τR2 (Xj
2) then wp(X

i
2) ≥ wp(X

j
2). Therefore,

the element in the first position is the most effective and so on. The selected
pair can be defined by the equation:

X∗2 = arg max
Xi
2∈τR2

wp(X
i
2). (16)

3.4.2. Selection of Rankers Set

Based on the selection of pairs, this section extends the approach for
selecting combinations of any number of rankers. The method applies the
selection for combinations of any size through the union of the most relevant
pairs, which is indispensable to guarantee the selection for larger rankers sets.

Figure 3 illustrates the algorithm for selection of rankers combination.
The input is given by the ranked list τR2 , which is composed by ranker pairs
sorted according to wp. The intersection among pairs {R2, R3}, {R1, R2},
{R1, R3} gives rise to the combination {R1, R2, R3}, which appear in τR3 .
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The value of w corresponds to the sum of wp from the originating pairs.
Notice that the pair {R4, R5} does not lead to any combination in C3, once
this pair does not have any intersection in τR2 . The intersection-based process
is repeated for obtaining the combinations of four elements (C4), and can be
iteratively repeated for bigger combinations.

R1
R2
R3
R4
R5

C2 = 2

p

C3

{R  , R  }    0.4 

...

{R  , R  }    0.9 2 3
{R  , R  }    0.81 2

W2

{R  , R  }    0.71 3
{R  , R  }    0.54 5

1 6

{R  , R  , R  }    2.4 1 2

W3
3

{R  , R  , R  }    1.21 2 6

C4

{R  , R  , R   , R  }    4.7 1 2

W4
3 6

LR= 5 R6

p

2* = {R  , R  } 2 3 3* = {R  , R  , R  } 1 2 3 4* = {R  , R  , R  ,  R  } 1 2 3 6

{R  , R  , R  }    1.1 1 3 6

Figure 3: Illustration of the proposed selection method.

The set Cn contains all the combinations of size n formed from the union
of the combinations of size (n− 1) that belong to τRn−1. Formally, the set Cn
is defined1 by the Equation 17.

Cn =

{
R2 se n = 2

{Xi
n−1,X

j
n−1 ∈ τRn−1 ∧ |Xi

n−1 ∪ Xj
n−1| = n} se n ≥ 3

(17)

As the function wp defines a score only for pairs of rankers, it can be
generalized for combinations of any size through a function w, defined by the
Equation 18. It applies a sum of the values of w from the combinations of
size (n− 1) recursively, which has as base case the value obtained in wp.

w(Xn) =

{
wp(Xn) se n = 2∑

Xi
n−1∈τRn−1

w(Xi
n−1) se n ≥ 3 (18)

The value of w can be computed for all the combinations in the collection
Cn. In the following the combinations can be sorted in a decreasing of w to
obtain a ranked list of the combinations τRn .

1According to the union operation for a given size, the set Cn can be empty.
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Formally, the ranked list of ranker combinations τRn = (X1
n,X

2
n, ...,X

LR
n )

can be defined as a permutation of Cn ⊂ Rn. The permutation τRn is a
bijection of the set Cn in [LR] = {1, 2, ..., LR}, where LR is defines the size
of the list.

Therefore, generalizing the selection algorithm, the process for obtaining
the selected combination (X∗n) of any size (n) is defined by the Equation 19.
Alternatively, the selected combination X∗n can also be understood as the one
ranked in the first position of ranked combinations list τRn .

X∗n = arg max
Xi
n∈τRn

w(Xi
n). (19)

Algorithm 1 presents the pseudo-code for an efficient algorithmic solution
for the proposed method. The input is given by a set of rankers R and the
size t of the combination to be selected. The presented approach still does
not offer a strategy to automatically define the size of the combination to be
selected, which is one of the possibilities for future work.

The selection process is based on the selection of pairs, which occurs in
the lines (1) and (2). While in (1) the set C2 is initialized with all of the
available pairs obtained from R, in (2) a ranked list of the pairs is obtained.
The function sort(Cn, w, LR) returns a list which contains the first top-LR
combinations of Cn decreasingly sorted by the function w which is internally
computed by the function sort. Between (3) and (12) the pseudo-code de-
scribes the iterative process for obtaining the sets Cn and τRn for different
values of n until reaching the value of t. We can say that the Equation 17 is
equivalent to the process described by the lines (1), for pairs, and (4) to (10)
for combinations of any size. Finally, (13) describes the process for obtaining
the selected combination X∗t according to the Equation 19.

3.5. Aggregation Method

Given a selected combination of rankers, the objective consists in to ag-
gregate the retrieval results computed by each ranker. The USRF is very
flexible and can use different aggregation methods for performing the aggre-
gation of rankers. In this work, we use the CPRR (Cartesian Product of
Ranking References) [76] method, a recent proposed unsupervised approach
which presents effective and efficient results comparable to the state-of-the-
art. The CPRR has as its central idea the use of the Cartesian product
with the objective of maximizing the contextual information coded in the
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Algorithm 1 Selection of Rankers Combination

Require: Set of rankers R and the size t of the combination to be selected.
Ensure: Selected combination X∗t .

1: C2 ← R2

2: τR2 ← sort(C2, w, LR)
3: for n = 3 to t do
4: Cn ← ∅
5: for all Xi,Xj ∈ τRn−1 do
6: Xu ← Xi ∪ Xj

7: if |Xu| = n then
8: Cn ← Cn ∪ {Xu}
9: end if

10: end for
11: τR ← sort(Cn, w, LR)
12: end for
13: X∗t ← τRt (1)
14: return X∗t

ranked lists. For efficiency and scalability reasons, only the subset of the
top-L images of the ranked lists is considered.

4. Experimental Evaluation

This section presents the experimental evaluation conducted in order to
asses the effectiveness of the proposed approach. Section 4.1 discusses the
experimental protocol, describing datasets, evaluation measures, visual fea-
tures, and the methods considered as baselines. Section 4.2 analyzes the
proposed method considering different aspects, including parameters and
measures. Section 4.3 presents the obtained results in terms of selection and
combination tasks, while Section 4.4 compares the obtained results to other
state-of-the-art methods. Finally, Section 4.5 shows some visual results.

4.1. Experimental Protocol

The experimental protocol is presented as follows: Section 4.1.1 describes
the datasets; Section 4.1.2 discusses the visual features and Section 4.1.3 the
selection scenarios considered; and Section 4.1.4 presents the methods used
as baselines.
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4.1.1. Datasets

The experimental analysis considered five different datasets with sizes
ranging from 1,360 to 10,200 images, which are presented in Table 2. Most of
them are frequently used for image retrieval tasks. The MAP was computed
considering every image in the dataset as a query, except for the Holidays
dataset where a specific set of queries was considered following the protocol
proposed by the authors of the dataset in [31].

Besides the MAP, Recall@40 and N-S Score were used for the datasets
MPEG-7 and UKBench, respectively. These measures were employed to
facilitate the comparison of our results with state-of-the-art baselines.

Table 2: Datasets considered in the experimental evaluation.

Dataset Size Type General Effectiv.
Description Measure

Flowers [50] 1,360 Flowers Composed of 17 species of flowers with 80 images
of each presenting pose and light variations. This
dataset is distributed by the University of Oxford.

MAP

MPEG-7 [37] 1,400 Shape Composed of 1,400 shapes divided in 70 classes.
Commonly used for evaluation of post-processing
methods.

MAP,
Recall@40

Holidays [31] 1,491 Scenes Commonly used as image retrieval benchmark, the
dataset is composed of 1,491 personal holiday pic-
tures with 500 queries.

MAP

Corel5k [44] 5,000 Objects/
Scenes

Composed of 50 categories with 100 images for each
class, including diverse scene content such as fire-
works, bark, microscopy images, tiles, trees, etc.

MAP

UKBench [51] 10,200 Objects/
Scenes

Composed of 2,550 objects or scenes. Each ob-
ject/scene is captured 4 times from different view-
points, distances, and illumination conditions.

MAP,
N-S
Score

4.1.2. Visual Features

A wide variety of visual features were considered, including different cat-
egories: global, local, and deep learning. Table 3 presents each of them
followed by their respective types, references, a short description, and the
MAP obtained for each dataset. Notice that, for all the datasets, the set of
applied descriptors is similar, except for the MPEG-7 dataset which presents
a more specific retrieval scenario and, therefore, only shape descriptors were
employed.

The deep learning results were obtained using PyTorch [56], one of the
most popular open-source frameworks for machine learning. All of the net-
works were trained on ImageNet [20], a dataset commonly used for training
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general purpose convolutional neural networks. The distances were extracted
from the feature vectors obtained from the last layer before the classification
layer. For the CNN-OLDFP, the features vectors are offered by [69], the
network mixes techniques of deep learning and bag of words aiming at opti-
mizing the effectiveness of the results.

Table 3: Information about the descriptors used in the experimental evaluation.

Category Type Descriptor Short Description
Original MAP (%)
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Color

ACC [29] Auto Color Correlogram —– 18.99 23.44 87.72 64.29
SPACC [29, 48] Spatial Pyramid ACC —– 19.20 23.86 85.30 62.37
CLD [15] Color Layout Descriptor —– 18.54 17.86 59.58 37.59
SCD [15] Scalable Color Descriptor —– 10.25 14.56 83.04 54.26
SCH [15] Simple Color Histogram —– 13.43 17.56 48.98 24.19
FOH [48, 78] Fuzzy Opponent Histogram —– 11.42 15.87 57.05 25.77
BIC [71] Border/Interior Pixel Classification —– 25.56 —– 80.46 —–

Shape

PHOG [18, 48] Pyramidal Histogram of oriented gradients —– 14.74 15.80 41.60 31.15
AIR [25] Articulation-Invariant Representation 89.39 —– —– —– —–
ASC [43] Aspect Shape Context 85.28 —– —– —– —–
IDSC [42] Inner Distance Shape Context 81.70 —– —– —– —–
CFD [60] Contour Features Descriptor 80.71 —– —– —– —–
BAS [1] Beam Angle Statistics 71.42 —– —– —– —–
SS [16] Segment Saliences 37.82 —– —– —– —–

Texture
LBP [52] Local Binary Patterns —– 10.34 14.83 47.19 28.82
SPLBP [48, 52] Spatial Pyramid LBP —– 10.92 15.41 52.14 33.09
EHD [49] Edge Histogram Descriptor —– 12.46 16.80 44.10 25.83

Color and
Texture

CEDD [11] Color and Edge Directivity Descriptor —– 20.48 23.00 70.45 51.59
SPCEDD [11, 48] Spatial Pyramid CEDD —– 21.94 28.70 74.98 56.09
FCTH [12] Fuzzy Color and Texture Histogram —– 20.56 23.93 73.70 48.44
SPFCTH [12, 48] Spatial Pyramid FCTH —– 21.73 26.43 77.78 55.43
JCD [94] Joint Composite Descriptor —– 20.89 24.73 74.85 52.84
SPJCD [48, 94] Spatial Pyramid JCD —– 22.56 28.02 76.67 56.58
COMO [79] Compact Composite Moment-Based Descriptor —– 21.83 21.05 79.77 49.66

Holistic GIST [54] Global Image Descriptor for low-dim. features —– 9.82 15.98 45.44 21.59

Local Bag of Words
SIFT [47] Scale-Invariant Feature Transform with VLAD —– 28.47 12.60 74.52 54.63
VOC [81] Vocabulary Tree —– —– —– 91.14 —–

Deep
Learning

Convolutional
Neural
Networks
trained on
Imagenet

CNN-SENet [28] 154-layers Squeeze-and-Excitation Neural Network —– 43.16 56.92 92.15 71.60
CNN-ResNet [26] 152-layers Residual Neural Network —– 51.83 64.81 94.54 74.88
CNN-FBResNet [26] 152-layers ResNet trained by Facebook AI Research —– 52.56 64.21 93.88 72.65
CNN-ResNeXt [85] 101-layers “Next Generation” ResNet —– 51.91 62.39 93.67 74.16
CNN-DPNet [13] 92-layers Dual Path Neural Network —– 50.93 65.15 90.47 70.59
CNN-VGGNet [45] 19-layers VGG Neural Network —– 39.05 47.85 87.99 67.96
CNN-BnVGGNet [45] 19-layers Binaural VGG Neural Network —– 41.87 52.72 89.24 67.60
CNN-InceptionV4 [73] Fourth version of the Inception Neural Network —– 42.35 58.66 86.82 63.84
CNN-InceptionResNet [73] Inception architecture with residual connections —– 42.20 61.17 87.23 62.87
CNN-BnInception [30] Binaural Inception Neural Network —– 46.58 46.60 91.84 70.06
CNN-NASnet-Large [103] Convolutional Neural Architecture Search Network —– 40.74 53.55 86.90 64.48
CNN-AlexNet [36] Alex Krizhevesky Convolutional Neural Network —– 46.04 37.67 85.57 65.25
CNN-Xception [14] Depthwise Separable Convolutions Neural Network —– 47.31 54.44 90.83 64.94

Pooled CNN CNN-OLDFP [69] Object Level Deep Feature Pooling —– —– —– 97.74 88.46

4.1.3. Selection Scenarios

Along the experimental evaluation, different selection scenarios were con-
sidered:

(i) the full that considers all the presented descriptors;

(ii) only global and local descriptors;

(iii) only deep learning;
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(iv) the custom scenarios, which consider a set of six different descriptors
for each dataset.

The custom scenario is composed by the two most effective deep learning
descriptors, the most effective local descriptor, and the three most effective
global descriptors of different types. Table 4 presents the custom scenarios
for each one of the datasets, the descriptors are presented in decreasing MAP
order.

Table 4: Descriptors considered in the custom scenarios.

Dataset Descriptors
MPEG-7 AIR, ASC, IDSC, CFD, BAS, SS
Flowers CNN-FBResNet, CNN-ResNeXt, SIFT, BIC, SPJCD, PHOG
Corel5k CNN-DPNet, CNN-ResNet, SIFT, SPACC, SPCEDD, EHD
UKBench CNN-OLDFP, CNN-ResNet, VOC, ACC, COMO, SPLBP
Holidays CNN-OLDFP, CNN-ResNet, SIFT, ACC, SPJCD, SPLBP

4.1.4. Baselines

With the purpose of presenting a comprehensive experimental analysis,
different approaches were considered as baselines. To make a fair comparison
with our method, all of the baselines are completely unsupervised. All of
them are recent, present results comparable to the state-of-art, and are open-
source. This allows us to use the same input for the proposed method and the
baselines. Table 5 presents the late fusion methods considered as baselines.

Table 5: Late fusion methods considered as baselines.

Method General Description

Correlation Graph [63]

The method exploits the intrinsic geometry of the dataset aiming at
defining a more effective distance between images. Among the dif-
ferent employed strategies, the method builds a graph and analyzes
its strongly connected components.

Query-Adaptive Fusion [98]

Given a matrix that offers the similarity among the images in a
dataset, the effectiveness of a descriptor is estimated as inversely
proportional to the area below the similarity curve for each ele-
ment in the collection. The estimations are used to compute more
effective similarity values, which are offered as the output of the
method.

Graph Fusion [95]

For each of the input data, an undirected weighted graph is built
considering each one of the images as a query. The graps are fused
using different techniques, including the PageRank [55] algorithm.

In addition, five feature selection algorithms based on early approaches
were also considered as baselines:
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• Laplacian Score [27];

• Spectral Regression (SPEC) [96];

• Muti-cluster Feature Selection (MCFS) [10];

• Unsupervised Discriminative Feature Selection (UDFS) [93];

• Nonnegative Discriminative Feature Selection (NDFS) [41].

The first two are based on similarity measures and the others are based
on the processing of sparse matrices. All of them are publicly available in
the scikit-feature [39] 2, a python library for feature selection.

4.2. Experimental Analysis

This section presents various experiments which analyzes the proposed
framework in different aspects. Section 4.2.1 evaluates the impact of param-
eters on the retrieval results. Section 4.2.2 assess the proposed method in
terms of the effectiveness estimation and rank correlation measures. Sec-
tion 4.2.3 analyzes the influence of correlation on the selection measure and
Section 4.2.4 evaluates the effect of the list size of combinations.

Most of the results presented in this section consider the selection of
pairs. For comparison purposes, a weighted arithmetic mean of the MAP is
computed for the top-5 pairs ranked by the USRF (weight 5 for the first pair,
4 for the second, and so on).

4.2.1. Impact of parameters

This section analyzes the impact of parameters given neighborhood size
k and weight of correlation β. The neighborhood size is used in three dif-
ferent stages of the USRF framework: to compute the effectiveness estima-
tion; to compute the correlation measure; and to fuse the rankers (through
CPRR [76]).

A joint analysis of the parameters k and β was conducted for each one of
the datasets considering the custom scenario. The results are presented by
Figure 4. To perform this experiment, the Authority Score was used as the
effectiveness estimation measure and RBO as the correlation measure, once
they presented results comparable or superior to the other measures in [66]
and [53], respectively.

2featureselection.asu.edu

21

featureselection.asu.edu


(a) MPEG-7 (b) Flowers

(c) Corel5k (d) UKBench

(e) Holidays

Figure 4: Impact of parameters K and β on the weighted arithmetic mean considering the
MAP of the top-5 selected pairs for each dataset.
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Based on the obtained results, we adopted the value of k as (20, 50, 50,
5, 3) for the datasets MPEG-7, Flowers, Corel5k, UKBench and Holidays,
respectively. The value of β is analyzed in Section 4.2.3, once it can vary
according to the selection scenario. However, observing the obtained results,
it can be seen that β = 1 seems to be satisfactory for the custom scenarios.

4.2.2. Selection Measures

The proposed method is very flexible allowing different effectiveness esti-
mation and rank correlation measures to be used. Table 6 shows the selection
results for each one of the datasets considering different measures and the
custom scenarios. The reported results consider a weighted arithmetic mean
of MAP obtained by the top-5 selected pairs for different combinations of
measures.

Notice that, in general, the results present small variations for different
measures, what evinces the robustness of our method to the the chosen mea-
sures. For most cases, the best results were obtained considering Reciprocal
Density and RBO. Therefore, these two measures were adopted for all of the
remaining experiments.

Table 6: Weighted arithmetic mean considering the MAP of the top-5 selected pairs for
different combinations of measures (fixed β = 1).

Measures Average MAP for Datasets (%)
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Authority

Jaccard 98.95 70.15 85.93 96.32 80.14
Jaccardk 99.33 72.82 85.93 97.07 86.64
RBO 99.33 73.39 85.93 96.97 86.53
Kendallτ 99.33 73.37 85.93 97.07 86.64
Spearman 99.09 70.15 85.60 97.02 86.64

Reciprocal

Jaccard 99.50 70.44 85.93 97.06 84.77
Jaccardk 99.62 70.44 85.93 97.15 86.64
RBO 99.62 72.52 85.93 97.43 86.53
Kendallτ 99.62 72.52 85.93 97.34 86.64
Spearman 99.60 70.44 85.60 97.34 86.64

4.2.3. Correlation Relevance

The parameter β adjusts the weight of relevance on the selection measure.
In previous experiments (Section 4.2.1), it was seen that β = 1 seemed to be
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satisfactory. However, the value of β is relatively sensible to the number of
descriptors offered as input. Therefore, we conducted an experiment which
evaluates the effectiveness of our approach for randomly generated scenarios
of different sizes. The results are presented in Figure 5 for two datasets.
Each of the dots in the graph corresponds to the mean of 20 executions.
Once again, for each execution, we consider the weighted average of the top-
5 selected pairs.

In general, the results reveal that for scenarios with few descriptors (around
6 or less) β = 1 is satisfactory. However, as the number of descriptors in-
crease, β = −1 presents even better results. This is due to the fact that,
with a small set of descriptors, the USRF is capable of using the correlation
as a way of exploiting the complementarity of the data. While for a large
set of descriptors, the correlation is more adequate when selecting the most
similar elements, once this strategy filters the outliers.

Therefore, for the remaining experiments, we adopted β = 1 for the
custom scenarios (six descriptors) and β = −1 for the others.
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Figure 5: Evaluation of the parameter β considering randomly generated scenarios with
different number of descriptors.

4.2.4. Size of the Ranked Combinations Lists

The ranked combinations lists τRn store the combinations sorted by de-
creasing order of selection score w. As the number of combinations (n) raises,
the number of possible combinations exponentially increases. Therefore, it
becomes crucial to not consider the whole τRn , but just its first top-LR posi-
tions.
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An experiment was performed aiming at evaluating the impact of the
parameter LR on the results. In this analysis, we considered the weighted
arithmetic mean of the MAP of the top-5 elements in τRn with n (size of the
combination) in the interval [3, 5]. For all the datasets, all the descriptors
were considered (full scenario).

The results are shown in Figure 6. For a better visualization of the data,
the graphs are shown separately due to the scale of the values. As can be
seen, there is a very small variation as LR increases. Therefore, we concluded
that the value of LR can not be very low (LR < 30) to not compromise the
selection results. We adopted LR = 100 for all the remaining experiments,
once high execution times occur only with values a lot higher than that.

10 20 30 40 50 60 70 80 90 100
0.8

0.802

0.804

0.806

0.808

0.81

n = 3 n = 4 n = 5

Impact of the Parameter       on the dataset Flowers

Value of

W
ei

gh
te

d 
A

ve
ra

ge
 M

A
P

10 20 30 40 50 60 70 80 90 100
0.888

0.89

0.892

0.894

0.896

0.898

W
ei

gh
te

d 
A

ve
ra

ge
 M

A
P

Value of

Impact of the Parameter       on the dataset Corel5k

n = 3        n = 4       n = 5

(a) Flowers (b) Corel5k

10 20 30 40 50 60 70 80 90 100
0.964

0.966

0.968

0.97

0.972

Value of

n = 3        n = 4       n = 5

W
ei

gh
te

d 
A

ve
ra

ge
 M

A
P

Impact of the Parameter       on the dataset UKBench

10 20 30 40 50 60 70 80 90 100
0.865

0.87

0.875

0.88

0.885

0.89

Value of

n = 3        n = 4       n = 5

W
ei

gh
te

d 
A

ve
ra

ge
 M

A
P

Impact of the Parameter       on the dataset Holidays

(c) UKBench (d) Holidays

Figure 6: Impact of the parameter LR on the selection results.

4.3. Selection Results
While Section 4.3.1 presents analysis for the selection of pairs, Section 4.3.2

reports experiments for combinations of any size. In both cases, different se-
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lection scenarios are considered.

4.3.1. Selection of Ranker Pairs

Since the proposed approach is based on the selection of pairs, this section
has the objective of primarily evaluate the proposed approach considering
only pairs of rankers.

Initially, we report the results considering the custom scenarios. Figure 7
presents the results for the selection of pairs for two different datasets. Each
point in the graph corresponds to a different pair of rankers which has the
location set according to the value of the selection measure (wp) computed
by the USRF and the MAP obtained for the result of the fused pair.

It is expected that, the higher the value of the selection measure, higher
the MAP of the result. The Pearson correlation between the MAP and the
selection measure is 0.88 and 0.78 for the graphs (a) and (b), respectively.
Such values indicate a strong linear correlation, evidencing the effectiveness
of the proposed selection measure wp.
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Figure 7: Distribution of the pairs considering the proposed unsupervised selection mea-
sure compared with MAP in the custom scenarios.

For comparative purposes, in the next experiments three hypothetical
baselines are considered. The objective is to visualize how the proposed
approach compares to each one the following cases:

• Best Case: the best selection case is the one that always selects the
pair with the best MAP among the pairs available;
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• Average Case: from all the available pairs, we select the one that is
in the median if all of them were sorted by the MAP

• Worst Case: the worst selection case is the one that always selects
the pair with the worst MAP among the pairs available.

Aiming to facilitate the visualization of the results, the following lines are
presented: three dashed lines considering the hypothetical baselines (best,
average and worst case), a dashed line considering the best isolated visual
feature and, finally, a line for the USRF. The horizontal axis corresponds to
the number of selected pairs and the vertical axis indicates the arithmetic
mean of the MAP of the selected pairs. This representation evaluates how
our approach is compared to each case.

Figure 8 reports the selection results for the Custom Scenario, considering
each dataset. It is noticeable that USRF has achieved results comparable to
the best case in all the datasets. Notice that the best case is a very strict
criteria, once it is always based on the MAP while the USRF is completely
unsupervised. In addition, the results obtained by the USRF for a small
number of pairs is superior the the best isolated ranker for all datasets.

The same experiment was reproduced considering all the rankers for each
dataset, which define our Full Scenario. Figure 9 presents the results for each
dataset (except for MPEG-7, where the custom scenario is identical to the full
scenario). The scenarios with all descriptors are more challenging, once the
variation among the rankers tends to be higher. Once again, the selection
results are very similar to the best case on all datasets. Notice that, for
the datasets UKBench and Holidays, there are few pairs with results above
the best isolated descriptor and, despite of that, our method was capable of
selecting them.

Other more specific selection scenarios were also evaluated. Figure 10
presents the evaluation for the datasets Corel5K and UKBench in two sce-
narios: (i) using only global and local descriptors; (ii) and only deep learning
descriptors. The selection results of the graph (a) are located near of the
average case, probably due to the high variability between the MAP of the
descriptors. Besides that, pairs with results above of the best isolated de-
scriptor were selected among the first positions.

4.3.2. Selection of Rankers Set

The rankers that compose the best selected combination (X∗) for each
dataset are presented in Table 7. The relative gain is computed in relation
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USRF Best Case Average Case Worst Case Best Descriptor
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Selection Results on the Flowers Dataset (Custom)
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Selection Results on the Corel5k Dataset (Custom)
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Figure 8: Evaluation of the proposed approach (USRF) for pairs of rankers on the custom
scenarios.
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USRF Best Case Average Case Worst Case Best Descriptor
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Selection Results on the Flowers Dataset (Full)

1 100 200 300 400 496
0

0.2

0.4

0.6

0.8

1

Number of selected combinations

A
ve

ra
ge

 M
A

P
 

Selection Results on the Corel5k Dataset (Full)
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Selection Results on the UKBench Dataset (Full)
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Figure 9: Evaluation of the proposed approach (USRF) for pairs of rankers on the full
scenarios.

to the best isolated descriptor in each case. Notice that the USRF achieved
positive gains in all of the presented circumstances.

An experiment was conducted with the purpose of analyzing the impact
of the size of the combinations in the USRF. For each dataset, the weighted
arithmetic mean of the top-5 combinations was computed (weight 5 for the
first position, weight 4 for the second, and so on). The results are reported in
Figure 11. For a better visualization of the results, the graphs were splitted
due to the difference in the scale of the values. As can be seen, it is not pos-
sible to establish a fixed cardinality for X∗, once the size that offers the best
value differs considerably among the datasets. While the datasets Holidays
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Figure 10: Evaluation of the proposed approach (USRF) for pairs of rankers on the other
scenarios.

and UKBench are the best values were offered by the combinations of size
two (pairs), the others require larger values. Investigating an unsupervised
strategy to select the best size for the X∗ is among of our proposals for future
works.

4.4. Comparison with Other Methods

This section presents the comparison of the USRF results with methods
of the literature. Section 4.4.1 compares only with techniques based on late
fusion and Section 4.4.2 with techniques of feature selection based on early
strategies. Finally, Section 4.4.3 confronts our results with the state-of-the-
art.
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Table 7: MAP of the selected combination for each dataset considering different scenarios.

Scenario Dataset Selected Combination
MAP Relative
(%) Gain

Full

MPEG-7 AIR + ASC + BAS + CFD + IDSC 99.92 +11.78%

Flowers
AlexNet + BnInception + DPNet + FBResNet +

81.71 +55.46%
ResNeXt + ResNet + Xception + LBP

Corel5k
DPNet + FBResNet + InceptionResNet +

89.88 +37.96%
InceptionV4 + ResNeXt + ResNet + SENet

UKBench OLDFP + ResNet 98.32 +0.59%
Holidays OLDFP + ResNet 90.51 +2.32%

Custom

MPEG-7 AIR + ASC + BAS + CFD + IDSC 99.92 +11.78%
Flowers BIC + FBResNet + ResNeXt + SIFT 79.10 +50.50%
Corel5k DPNet + ResNet + SPACC 90.32 +38.63%
UKBench ACC + OLDFP + ResNet + VOC 99.02 +1.31%
Holidays OLDFP + ResNet 90.51 +2.32%
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Figure 11: Analysis of the size of the combinations for each of the datasets considering all
the rankers (full scenarios).

4.4.1. Late Fusion

For all the baselines, we considered the parameters reported by the au-
thors in their original work. Regarding cases where the dataset was not
evaluated in the original paper, we used the same value of k adopted in the
USRF, with the intent of making a fair comparison. Aiming to guarantee the
executions for all the datasets, the results are presented only for the custom
scenarios.

The comparison of the proposed approach with different late fusion base-
lines is shown by Table 8. It can be seen that our approach presents results
better than most of the datasets.
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Table 8: USRF compared to late fusion baselines on the custom scenarios.

Method
MAP (%)

MPEG-7 Flowers Corel5k UKBench Holidays
Best Descriptor 89.39 52.56 65.15 97.74 88.46

Correlation Graph [63] 95.79 46.22 58.25 96.06 65.11
Query-Adaptive Fusion [98] 92.03 49.56 69.60 96.61 82.59

Graph Fusion [95] 99.05 53.60 68.21 99.24 85.71

Proposed Method (USRF) 99.92 79.10 90.32 99.02 90.51

4.4.2. Late Fusion with Feature Selection

After applying PCA and L2-norm regularization for all the feature vec-
tors, the feature selection methods were employed to select the top-100 most
relevant features among the available ones. From the Euclidean distance of
the new vectors, we computed the ranked lists for the results and submitted
them as input for the CPRR re-ranking algorithm. Besides that, as these
methods are very expensive for a large number of features, the results are
presented just for the Flowers and Corel5k datasets. A comparison of the
proposed approach with feature selection methods, early fusion, are presented
in Table 9.

Table 9: USRF compared to feature selection techniques on the custom and full scenarios.

Method
MAP (%)

Flowers Corel5k
Custom Full Custom Full

Best Descriptor 52.56 65.15
Laplace [27] 70.84 61.28 86.09 78.40
SPEC [96] 71.46 49.67 72.82 63.99
MCFS [10] 75.81 55.95 86.38 84.74
UDFS [93] 69.70 63.97 80.77 78.20
NDFS [41] 71.68 65.41 86.09 87.17

USRF 79.10 81.71 90.32 89.88

4.4.3. State-of-the-art

Finally, USRF is evaluated in comparison to the main state-of-the-art
methods, among them post-processing approaches and image retrieval meth-
ods. The comparisons are presented for the datasets: MPEG-7, Holidays, and
UKBench. These datasets are commonly used as benchmark for content-
based image retrieval. Most of the state-of-the-art methods report
results considering a pre-selected set of descriptors as input, while
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Table 10: Comparison with various post-processing methods on the MPEG-7 [37] dataset
(Bull’s eye score - Recall@40).

Shape Descriptors Bull’s eye
score

Beam Angle Statistics (BAS) [1]

-

75.21%
Contour Feat. Descriptor (CFD) [60] 84.43%

Inner Dist. Shape Context (IDSC) [42] 85.40%
Aspect Shape Context (ASC) [43] 88.39%

Articulation-Invariant Rep. (AIR) [25] 93.67%
Post-Processing Methods Descriptors Bull’s eye

score
Contextual Dissimilarity Measure [32]

IDSC [42]

88.30%
Graph Transduction [90] 91.00%

Self-Smoothing Operator [33] 92.77%
Local Constr. Diff. Process [91] 93.32%

Mutual kNN Graph [35] 93.40%
SCA [4] 93.44%

Smooth Neighborhood [6] 93.52%
Reciprocal kNN Graph CCs [64] 93.62%

Graph Fusion [95]

CFD [60]

89.76%
Index-Based Re-Ranking [58] 92.85%

RL-Sim [61] 94.27%
Correlation Graph [63] 94.84%

Reciprocal kNN Graph CCs [64] 96.51%
Generic Diffusion Process [21]

ASC [43]

93.95%
Index-Based Re-Ranking [58] 94.09%

Correlation Graph [63] 95.50%
Local Constr. Diff. Process [91] 95.96%

Smooth Neighborhood [6] 95.98%
Reciprocal kNN Graph CCs [64] 96.04%

Tensor Product Graph [92] 96.47%
Graph Fusion [95]

AIR [25]

98.76%
Index-Based Re-Ranking [58] 99.93%

RL-Sim [61] 99.94%
Tensor Product Graph [92] 99.99%

Generic Diffusion Process [21] 100%
Neighbor Set Similarity [8] 100%

Reciprocal kNN Graph CCs [64] 100%
Proposed Approach (USRF) Selected Comb. 100%

our approach is responsible by doing the selection in a completely
unsupervised fashion. Therefore, we highlight that the comparison with
such state-of-the-art results is a very strict criterion.

Table 10 presents the results for the MPEG-7 dataset considering the
Recall@40, also known as bull’s eye score. As can be seen, the USRF is
capable of selecting a combination with maximum value of 100%.

The results obtained on the Holidays dataset are shown in Table 11.
Several state-of-the-art methods are included in the comparison. Notice that
USRF achieved a MAP of 90.51% in both scenarios, being comparable to
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the best retrieval results. It can be seen that the larger number of rankers
available in the full scenario did not compromise the selection, obtaining
results comparable or superior to the state-of-the-art in both cases.

Table 11: Comparison with the state-of-the-art in the Holidays dataset (MAP).

MAP for the state-of-the-art methods
Jégou Tolias Paulin Qin Zheng

et al. [31] et al. [75] et al. [57] et al. [68] et al. [99]
75.07% 82.20% 82.90% 84.40% 85.20%

Sun Zheng Pedronette Li Liu
et al. [72] et al. [97] et al. [64] et al. [40] et al. [46]
85.50% 85.80% 86.19% 89.20% 90.89%

Proposed Method (USRF)
Custom Scenario 90.51%

Full Scenario 90.51%

Similarly, Table 12 presents a comparison on the UKBench dataset. Our
proposed method achieved a N-S Score, which is similar to P@4, of 3.90
in the custom scenario and 3.94 in the full scenario. The full scenario is
more challenging due to the large number of rankers available. Besides that,
the USRF achieved a result even more significant in the full scenario, which
reveals the accuracy of the proposed selection algorithm.

Table 12: Comparison with the state-of-the-art in the UKBench dataset (N-S Score).

N-S scores for the state-of-the-art methods
Zheng Wang Sun Paulin Zhang Zheng

et al. [100] et al. [80] et al. [72] et al. [57] et al. [95] et al. [98]
3.57 3.68 3.76 3.76 3.83 3.84

Bai Xie Liu Pedronette Bai Bai
et al. [4] et al. [84] et al. [46] et al. [64] et al. [7] et al. [5]

3.86 3.89 3.92 3.93 3.93 3.94

Proposed Method (USRF)
Custom Scenario 3.90

Full Scenario 3.94

4.5. Visual Results

With the purpose of offering a qualitative visualization of the results, the
Figure 12 illustrates two example of ranked lists that compare the individual
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results for each ranker (descriptor) and the obtained by the combination
selected by the USRF. The query images are presented in green borders and
the incorrect results in red borders.

ACC

CNN-OLDFP

CNN-RESNET

VOC

USRF Result: ACC + OLDFP + RESNET + VOC

Figure 12: Two visual results showing the impact of our proposed selection and rank fusion
approach on UKBench dataset.

5. Conclusions

Selecting and fusing descriptors is of crucial relevance in image retrieval
tasks, especially in unsupervised scenarios. In this paper we have presented
an approach to select and combine descriptors (or rankers) in a completely
unsupervised way. Based on rank correlation and effectiveness estimation
measures, the proposed framework is flexible, and allow the use of different
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measures. A broad experimental evaluation was conducted, involving various
experiments, different retrieval tasks and several datasets and image features.
Experimental results demonstrated the potential of our approach in selecting
high-effective combinations. As future work, we intend to investigate the
unsupervised determination of the best size of combinations to be used by
the proposed USRF approach.
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