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aDepartment of Statistics, Applied Mathematics and Computing, State University of São Paulo (UNESP), Av. 24-A, 1515, Rio Claro, SP 13506-900, Brazil
bDepartment of Computer and Information Sciences, Temple University, North 12th Street, 1925, Philadelphia, PA 19122, USA

ABSTRACT

Due to a huge volume of information in many domains, the need for classification methods is imperi-
ous. In spite of many advances, most of the approaches require a large amount of labeled data, which
is often not available, due to costs and difficulties of manual labeling processes. In this scenario, unsu-
pervised and semi-supervised approaches have been gaining increasing attention. The GCNs (Graph
Convolutional Neural Networks) represent a promising solution since they encode the neighborhood
information and have achieved state-of-the-art results on scenarios with limited labeled data. How-
ever, since GCNs require graph-structured data, their use for semi-supervised image classification is
still scarce in the literature. In this work, we propose a novel approach, the Manifold-GCN, based on
GCNs for semi-supervised image classification. The main hypothesis of this paper is that the use of
manifold learning to model the graph structure can further improve the GCN classification. To the best
of our knowledge, this is the first framework that allows the combination of GCNs with different types
of manifold learning approaches for image classification. All manifold learning algorithms employed
are completely unsupervised, which is especially useful for scenarios where the availability of labeled
data is a concern. A broad experimental evaluation was conducted considering 5 GCN models, 3 man-
ifold learning approaches, 3 image datasets, and 5 deep features. The results reveal that our approach
presents better accuracy than traditional and recent state-of-the-art methods with very efficient run
times for both training and testing.

© 2023 Elsevier Ltd. All rights reserved.

1. Introduction

Over the last years, the fast development of data acquisi-
tion technologies and the huge growth of multimedia collec-
tions (e.g. image, video, music, and others) have made the
use of classification systems indispensable (Datta et al., 2008).
There is a wide range of different applications, including per-
son re-identification (Karanam et al., 2019), diagnosis of dis-
eases (Agarwal and Mostafa, 2011), facial recognition (Sultana
and Gavrilova, 2013), remote sensing (Wang and Song, 2013),
object identification (Schober et al., 2004), and various oth-
ers. However, despite the significant recent advances in fea-
ture extraction methods, effectively retrieving multimedia data
still remains a challenge in various scenarios. Such complexity
is mainly associated to the diverse aspects involved in human
visual perception, which usually can not be encoded by a sin-
gle visual feature (Kherfi and Ziou, 2006; Piras and Giacinto,
2017).

Due to the huge success of deep learning, especially based
on Convolutional Neural Networks (CNNs), multiple mod-
els applied to both image and video content, have been pro-
posed (Chen et al., 2017; Deng, 2014; He et al., 2016; Sandler
et al., 2018). Despite the remarkable results mainly supported
by CNN models (Chen et al., 2017; Deng, 2014; He et al., 2016;
Krizhevsky et al., 2012; Ye et al., 2020), most methods demand
a high amount of data to be trained (Sener and Savarese, 2018;
Ye et al., 2020). The availability of supervised training data
is often a challenge due to the need for labeling a lot of infor-
mation, which is expensive and time-consuming (Hino, 2020).
With the objective of easing up the process of labeling data
and not requiring manual intervention for this task, there are
researches that propose to assist the process of labeling with
automatic stages (Sener and Savarese, 2018). However, in spite
of these possibilities, the process of obtaining labeled data re-
mains a challenge for multiple tasks (Hino, 2020), since the
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amount of multimedia data available increases much faster than
the amount of labeled data that can be obtained for it (Li et al.,
2014).

In this scenario, various learning paradigms have been at-
tracting increasing attention in order to deal with the scarcity of
labeled data. Unsupervised (Guimarães Pedronette et al., 2021;
Li et al., 2019; Pedronette et al., 2019; Valem et al., 2017) and
semi-supervised (Kipf and Welling, 2017; Mandal et al., 2020;
Wang et al., 2020) strategies often offer attractive solutions.
While the unsupervised approaches require no labeled data at
all, the semi-supervised ones require a small set of labeled data.
A recent trend is given by weakly supervised learning (Zhou,
2017), which is a broad taxonomy that covers different strate-
gies often divided into three main categories: (i) incomplete su-
pervision: where only a subset of the training data is labeled, a
part of the other subset can be labeled considering active learn-
ing or semi-supervised learning; (ii) inexact supervision: the
available labels are used to create rules and constraints (heuris-
tics) on the training data; and (iii) inaccurate supervision: there
are wrong or low-quality labels and the idea is to identify the
potential mislabeled instances and to correct or remove them.

In general, incomplete supervision often depicts scenar-
ios very close to real-world applications, modeled by Semi-
Supervised Learning (SSL) which considers reliable but lim-
ited labeled data. Over the last years, SSL approaches have
also witnessed huge advances, mainly supported by Graph Con-
volutional Networks (GCNs) (Kipf and Welling, 2017). Dif-
ferent from traditional CNN models, which generally operate
through convolutions in the Euclidean space, the GCN models
allow convolution operations in non-Euclidean domains defined
by graph-based structures (Kipf and Welling, 2017; Wu et al.,
2021). Although very effective, CNN models often ignore con-
textual information such as neighborhood references and the
relationship between the elements in the dataset. Furthermore,
CNNs are often applied to 2D and 3D data (e.g., images and
videos) and are generally not easily applicable to 1D feature
vectors, unless some data processing or conversion is done in
the original data (Sharma et al., 2019).

The GCNs exploit multidimensional feature vectors and
graph-based neighborhood structures to learn more effective
representations. Due to these aspects, the GCNs have been re-
cently applied for graph-based data on semi-supervised learn-
ing tasks, achieving state-of-the-art results. Several GCN vari-
ations have been proposed with relevant results (Bianchi et al.,
2021; Klicpera et al., 2019; Veličković et al., 2018; Wu et al.,
2019). The use of GCN has many different applications. There
are some recent works that exploit graph learning for question
and answer systems (Nie et al., 2020), including conversational
image search (Nie et al., 2021).

While it offers an effective contextual representation learn-
ing strategy, GCN models require graph-structured data. The
graph data is inherently available in some domains, but needs
to be inferred or constructed in others (Franceschi et al., 2019).
Consequently, several methods have been proposed for graph-
structured data as citation datasets (Bai et al., 2019; Bianchi
et al., 2021; Chen et al., 2020a; Klicpera et al., 2019; Li et al.,
2018; Veličković et al., 2018; Wu et al., 2019), but only a

few approaches have been proposed for image and multime-
dia data (Chaudhuri et al., 2019; Liu et al., 2019; Yang et al.,
2020; Zhang et al., 2021). In most cases, the most direct ap-
proach is to create a k-nearest neighbor graph. However, the
GCN models are sensitive to the input graph, in the sense that
a more effective classification depends on the edges between
nodes of the same class.

In this paper, we propose a novel GCN-based approach,
the Manifold-GCN, for image classification in semi-supervised
scenarios, with limited labeled data. Deep features are extracted
for image representation employing transfer learning by CNNs
and Vision Transformers (ViT) models. Ranking structures are
computed and used as input by unsupervised manifold learn-
ing algorithms based on these extracted features. In general,
manifold Learning approaches aim to capture and exploit the
intrinsic manifold structure to compute a more effective dis-
tance/similarity measure (Jiang et al., 2011). In this work, we
consider recent unsupervised manifold learning methods to pro-
vide more effective similarity measures using rank-based for-
mulations.

The manifold learning methods produce more effective rank-
ing results, i.e., improved neighbor sets, which are exploited
for building the input graph of the GCN model. In addition to
constructing kNN graphs, the use of reciprocal kNN graphs is
proposed. The main hypothesis of the paper is that the use of
manifold learning to improve the graph structure provided as
the input of the Graph Convolutional Network (GCN) can fur-
ther improve the classification results obtained. This work pro-
poses and validates this hypothesis on different manifold learn-
ing and recent GCN approaches.

We can highlight the main contributions of our work as fol-
lows: (i) novel ways to learn the graph structures that im-
prove GCN image classification; (ii) the use of reciprocal kNN
graph in order to provide a more reliable graph for GCNs.
There are very few works that employ kNN graphs (Franceschi
et al., 2019) or manifold learning (Chen et al., 2020a) for
GCNs. In (Franceschi et al., 2019) the traditional kNN graph
is employed and (Chen et al., 2020a) uses manifold learning,
but in both works no image data is considered. Other few
works have recently employed GCN models on image classi-
fication (Chaudhuri et al., 2019; Liu et al., 2019; Yang et al.,
2020; Zhang et al., 2021). However, to the best of our knowl-
edge, this is the first work that exploits both manifold learning
and reciprocal kNN graphs for GCN-based semi-supervised im-
age classification. In addition, it combines powerful contextual
modeling given by GCN models with effective representations
given by CNNs and ViT features.

There are many applications of the proposed approach. The
improvement of classification results using GCNs may benefit
many different areas, especially when there is limited labeled
data. For example: person re-identification (Karanam et al.,
2019) and diagnosis of diseases (Agarwal and Mostafa, 2011).
The Manifold-GCN can be employed in scenarios where the
graph data is not previously available by building the graph
from the features and employing manifold learning.

A wide experimental evaluation was conducted in order to
assess the effectiveness of the proposed approach. The experi-
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mental results were obtained on 3 public datasets. We evaluated
the impact of different GCN models combined with different
manifold learning methods. The experimental results demon-
strate the effectiveness of the proposed approach and the gains
on combining manifold learning and reciprocal kNN graphs.

This paper is organized as follows. Section 2 presents the
related work, while Section 3 presents the formal definition of
semi-supervised learning. Section 4 describes our proposed ap-
proach, the ManifoldGCN. Section 5 presents the GCNs and
manifold learning methods considered. Section 6 reports the
experimental evaluation. Finally, Section 7 states conclusions
and considers possible future works.

2. Related Work

This section presents an overview of the methods proposed
for semi-supervised image classification over recent years and
their main ideas, especially regarding deep learning.

Semi-supervised approaches perform training considering
both labeled and unlabeled data, which is advantageous in mul-
tiple scenarios where there is little labeled data (van Engelen
and Hoos, 2019). Some of them rely on the generation of
pseudo-labels (Vanyan and Khachatrian, 2021). Among the
traditional methods for generating pseudo-labels, we can cite:
Label Spreading (Zhou et al., 2004) and Pseudo-label (Lee,
2013). There are also several supervised approaches that later
presented semi-supervised variants that do not require the gen-
eration of pseudo-labels. For example: Support Vector Ma-
chines (Cortes and Vapnik, 1995) (SVM) and Optimum Path
Forest (Amorim et al., 2014) (OPF).

The taxonomy and categories of semi-supervised approaches
vary in the literature (van Engelen and Hoos, 2019; Vanyan and
Khachatrian, 2021). Generally, there is some overlap among
categories. In the following subsections, we present them
according to 4 research directions (Vanyan and Khachatrian,
2021): category regularization; stronger augmentation; con-
vergence with self-supervised learning; and graph-based ap-
proaches.

2.1. Consistency regularization

These methods rely on a concept known as category regular-
ization. The central idea is to force the approach to produce
similar results for augmented versions of the same unlabeled
image. This is generally done by considering an additional term
in the loss function. The first method as far as it is known, to
use this concept is called II-Model (Laine and Aila, 2017). In
II-Model, they use translation and random horizontal flips as
augmentations for unlabeled data, which is often called weak
augmentation.

However, the main issue with II-Model is the unstable tar-
get, which compromises the algorithm learning procedure. The
Mean Teacher (Tarvainen and Valpola, 2017) approach was pro-
posed with the intent to address this issue. For this, they use two
separate models: the Student network and the Teacher network.
While the Student is trained as usual, the Teacher does not use
back-propagation and the weights are updated at each iteration
using the weights from the Student network.

2.2. Stronger Augmentation

Data augmentation is of crucial importance for various semi-
supervised approaches (Vanyan and Khachatrian, 2021). Some
strategies focus on improving the performance of classification
by employing different kinds of data augmentation techniques,
in such a way that the inputs given to the two branches of the
neural model (or, to the two separate networks) are sufficiently
distinct. There are many methods that fit in this category,
among them: Virtual Adversarial Training and Entropy Min-
imisation (Miyato et al., 2019) (VAT), Unsupervised Data Aug-
mentation (Xie et al., 2020) (UDA), MixMatch (Berthelot et al.,
2019), FixMatch (Sohn et al., 2020), ReMixMatch (Berthelot
et al., 2020), AlphaMatch (Gong et al., 2021). Some of them
also mix other ideas, such as the concept of consistency regu-
larization.

2.3. Convergence with Self-supervised Learning

Recently, self-supervision has been used by several semi-
supervised methods. Self-supervised approaches are a cate-
gory of representation learning algorithms capable of generat-
ing supervision signals without any human annotations. Most
approaches in this category use self-supervision to generate a
set of pseudo-labels for training. Among the main approaches
in this category, we can cite: SimCLR (Chen et al., 2020b),
CoMatch (Li et al., 2021), Self-Match (Kim et al., 2021).

2.4. Graph-based Approaches

A promising research direction is methods based on graphs.
There are different traditional graph-based approaches, both
transductive, and inductive ones (van Engelen and Hoos, 2019).
The idea is that the elements of the dataset can be represented
as nodes and the edges can be used to propagate or represent
some kind of information between these nodes. Graph-based
methods are usually based on the manifold assumption (van En-
gelen and Hoos, 2019): the graphs, constructed based on the lo-
cal similarity between data points, provide a lower-dimensional
representation of the potentially high-dimensional input data.
This makes these approaches advantageous for scenarios with
data of high dimensionality.

Recently, Graph Convolutional Networks (GCN), have been
proposed for semi-supervision. While CNNs are specially
built to operate on regular (Euclidean) structured data, the
GNNs work on graphs with different numbers of vertexes
and unordered nodes (irregular on non-Euclidean structured
data). There are many variants of GCNs proposed: GCN-
Net (Kipf and Welling, 2017), GCN-SGC (Wu et al., 2019),
GCN-GAT (Veličković et al., 2018), GCN-APPNP (Klicpera
et al., 2019), GCN-ARMA (Bianchi et al., 2021). Also, variants
of GNNs: GNN-LDS (Franceschi et al., 2019), GNN-KNN-
LDS (Franceschi et al., 2019).

The GCNs exploit feature vectors and graph-based neighbor-
hood structures to learn more effective representations. Due to
these aspects, the GCNs have been recently applied to graph-
based data on semi-supervised learning tasks, achieving state-
of-the-art results. Several GCN variations have been proposed
with relevant results (Bianchi et al., 2021; Klicpera et al., 2019;
Veličković et al., 2018; Wu et al., 2019). The use of GCN has
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many different applications. There are some recent works that
exploit graph learning for question and answer systems (Nie
et al., 2020), including conversational image search (Nie et al.,
2021).

However, there are still not many approaches for using GCNs
in image classification. Among the multiple research topics,
there is finding the best approach to model the graph and the
features, which are provided as the input for these networks
and directly impact their performance and results.

3. Graph-based Semi-Supervised Learning Formulation

In this section, we first discuss a formal definition of the
semi-supervised learning setting for classification tasks using
GCNs, mostly following the notation from (Kipf and Welling,
2017; Pedronette and Latecki, 2021).

Let C={o1, o2, . . . ,on} be an object collection, where oi ∈ C
denotes an image and n denotes the collection size. The collec-
tion is represented by an undirected graph G . The graph can be
formally defined as tuple G = (V ,X,E), where V denotes the
node set, X is a feature matrix, and E denotes the edge set.

The node set is defined by V = {v1,v2, . . . ,vn} where each
node vi ∈V represents an image oi ∈ C . Labels can be assigned
to nodes vi ∈ V , such that a set of labels can be defined as Y =
{y1,y2, . . . ,yc}. According to the labels, the node set can be
more specifically defined as V = {v1,v2, . . . ,vL,vL+1, . . . ,vn},
which denotes a partially labeled data set, where VL = {vi}L

i=1
is the labeled data items subset and VU = {vi}n

i=L+1 is the unla-
beled data items subset. Formally, the training set can be seen
as a labeling function fl : VL → Y , where yi = fl(vi)∀vi ∈ VL.
In general, on semi-supervised scenarios, we have |VL|≪ |VU |.

The feature matrix can be defined as X = [x1,x2, . . . ,xn]
T ∈

Rn×d , where xi is a d-dimensional feature vector which repre-
sents the image oi, or equivalently, the node vi. The vector xi is
obtained by a feature extraction approach, which can be defined
as function fe : C → Rd , such that xi = fe(oi).

The edge set E is a set of nodes pairs (vi,v j), formally
defined as E ⊆ {(vi,v j)|(vi,v j) ∈ V 2 ∧ vi , v j}. For graph-
structured content, the set E is intrinsically defined by the data.
For general image data, we propose to define the set E based
on the feature matrix X. How to define an effective graph is a
central challenge addressed by our approach, discussed in the
next section.

Once defined the graph G , a GCN model denoted by a func-
tion fgcn can be used to learn an embedded representation zi for
each node vi. The learned representation is exploited to perform
classification tasks. Formally, the classification goal is to learn
a function f̂l : VU → Y to predict the labels of unlabeled nodes
in VU .

4. Manifold-based Graph Convolutional Network

In this work, we propose the Manifold-based Graph Convo-
lutional Network (Manifold-GCN), a semi-supervised frame-
work based on the use of manifold learning and GCN mod-
els for image classification for scenarios with limited labeled

data. The initial representations were obtained by deep fea-
tures extracted by CNN and ViT models trained on a transfer
learning setting. Given the representations, the central idea con-
sists in exploiting contextual similarity measures given by un-
supervised manifold learning methods for computing a graph.
The similarity information encoded in the graph is exploited by
GCN models for learning novel representations used for classi-
fication.

Figure 1 illustrates the main steps that compose our strat-
egy. Each step is identified by a number (top of boxes) and
a function (bottom of boxes). In (1), a feature vector is ex-
tracted for representing each image. In (2), representations are
processed in order to obtain ranked lists, which encode the sim-
ilarity information. Unsupervised manifold learning methods
are used to analyze contextual similarity information and com-
pute more effective rankings in (3). In (4), the outputs of the
manifold learning methods are modeled as kNN graphs or re-
ciprocal kNN graphs. In (5), the graph and features are jointly
provided to the GCN models for semi-supervised training. The
embeddings obtained for each of the elements of the dataset can
be used for classification, through a softmax operation. Each of
the main steps of the framework is described in the next sub-
sections.

4.1. Similarity Measurement and Ranking Model

In the proposed approach, the similarity information is en-
coded on ranking structures. Let us consider a ranking task in
which, given a query image, an ordered list of images from the
collection is returned according to the similarity to the query.
Formally, given a query image oq, a ranked list τq=(o1, o2, . . . ,
oL) in response to the query, where L denotes the length of the
list. The ranked list τq can be defined as a permutation of a set
CL which contains the L most similar images to image xq in the
collection C . The permutation τq is a bijection from the set CL
onto the set [L] = {1,2, . . . ,L}. The τq(oi) notation denotes the
position (or rank) of image oi in the ranked list τq.

The ranked list τq can be computed based on the comparison
between image representations. Let d: Rd ×Rd → R be a dis-
tance function that computes the distance between two images
according to their corresponding feature vectors. The Euclidean
distance is often used as the distance function. Formally, the
distance between two images oi,o j is defined by d(xi, x j).

For a given query, a ranked list can be obtained by sorting
images in increasing order of the distance. In terms of ranking
positions, we can say that if image oi is ranked before image
o j in the ranked list of image oq, that is, τq(oi) < τq(o j), then
d(xq,xi) ≤ d(xq,x j). Taking every image in the collection as a
query image xq, a set of ranked lists T = {τ1,τ2, . . . , τn} can
be obtained. In this way, the set T can be obtained from the
feature matrix X and the ranking task defined by a function fr,
such that T = fr(X). Tree-based indexing structures (Omohun-
dro, 1989) and hashing approaches (Gionis et al., 1999) can be
exploited in order to provide efficient implementations for the
function fr. In this work, we consider BallTree (Omohundro,
1989; Pedregosa et al., 2011) structures.
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Fig. 1: Workflow of our proposed Manifold-GCN framework for image classification. The steps of the approach are numbered.

4.2. Unsupervised Manifold Learning

How to accurately define distance or similarity among data
elements is a challenging and fundamental step in many ma-
chine learning tasks. The most common approach is given by
pairwise comparisons based on Euclidean-like distance func-
tions. However, pairwise analyses ignore contextual informa-
tion and complex similarity arrangements encoded in the struc-
tural information of the dataset manifold. Aiming at addressing
such drawbacks, many contextual similarity approaches take
into account the structure of datasets in order to compute more
global and effective similarity measures.

Manifold Learning is a wide term that has many differ-
ent definitions in the literature. In general, manifold Learn-
ing approaches aim to capture and exploit the intrinsic mani-
fold structure to compute a more effective distance/similarity
measure (Jiang et al., 2011). Recently, unsupervised man-
ifold learning approaches based on ranking information have
achieved relevant advances in contextual similarity measure-
ment (Guimarães Pedronette et al., 2021; Pedronette et al.,
2019; Pedronette et al., 2021).

In fact, the set of ranked lists T encodes rich similarity infor-
mation about the image collection. The main objective of rank-
based manifold learning methods is to exploit such informa-
tion to capture the structure of the dataset manifold. Therefore,
this step consists of the use of unsupervised manifold learn-
ing methods for processing the original ranked lists, providing
more effective ranking results which are subsequently modeled
as graphs to be submitted to a GCN model.

Formally, the manifold learning methods can be defined as
a function fm that receives a set of ranked lists T as input and
returns a set of ranked lists Tm as output, which is expected to
be more effective than the original:

Tm = fm(T ). (1)

Once defined under a common formulation, three different
manifold learning algorithms were considered to instantiate the
proposed approach (described in Section 5).

4.3. Graph Building
The improved set of ranked lists computed by the manifold

learning methods is used to build a graph. The motivation is
based on the conjecture that more effective similarity informa-
tion can be extracted and encoded in the graph by exploiting
the processed ranked lists. Let G = (V ,X,E) be the graph de-
fined in Section 3. We propose to compute the edge set E as a
function of the set of ranked lists Tm, such that E = fg(Tm).

This work considers two distinct approaches to define the
function fg. The similarity information encoded in the ranked
lists is modeled through different neighborhood set formula-
tions. Both approaches are discussed in the following.

• Traditional kNN Graph: the kNN graph is based on the nat-
ural neighborhood set. Given an element oq, the natural neigh-
borhood set N (oq,k) contains the k most similar elements to
oq, which can be formally defined as:

N (oq,k) = {X ⊆ C , |X |= k ∧ ∀oi ∈ X ,o j ∈ C −X :
τq(oi)< τq(o j)}.

(2)

Therefore, the edge set E of the kNN graph can be defined as:

E =
{
(oq,o j) | o j ∈ N (oq,k)

}
. (3)

In other words, each element has an edge to the k most similar
elements.
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• Reciprocal kNN Graph: the reciprocal kNN graph is based
on the reciprocal neighborhood set (Qin et al., 2011), which re-
quires a stronger bidirectional similarity relationship. Different
from the natural neighborhood set, which is not symmetrical,
the reciprocal neighborhood set is symmetrically defined as:

Nr(oq,k) =
{

ob ji|ob ji ∈ N (oq,k)∧oq ∈ N (oi,k)
}
. (4)

The edge set E for the reciprocal kNN set can be defined as:

E =
{
(oq,o j) | o j ∈ Nr(oq,k)

}
. (5)

Thus, we can interpret that there are edges between the ele-
ments oq and o j if they are reciprocal neighbors in the top-k
positions of their ranked lists.

For both kNN and reciprocal kNN approaches, the edge set
E can be represented by a non-negative adjacency matrix A =
[ai j] ∈ Rn×n, which can be defined as:

ai j =

{
1, (oi,o j) ∈ E
0, otherwise.

(6)

The adjacency matrix A is used as input by GCN models, as
discussed in next section.

4.4. Graph Convolutional Networks

Graph Convolutional Networks (GCN), originally introduced
in (Kipf and Welling, 2017), aim at learning novel and more ef-
fective representations (embeddings) for each graph node. It
is done by iteratively aggregating the embeddings of its neigh-
bors, encoding the graph structure directly in a neural network
model. The original model proposed in (Kipf and Welling,
2017) is a two-layer GCN model which uses the graph rep-
resented by the adjacency matrix A for semi-supervised node
classification.

The network model can be depicted as a function both on the
feature data X and on the adjacency matrix A, as:

Z = fgcn(X,A), (7)

where Z denotes an embedding matrix, such that Z = [z1,z2,
. . . , zn]

T ∈ Rn×c and zi is a c-dimensional embedded represen-
tation learned for the node vi; where n is the dataset size and c
corresponds to the number of classes.

The degree matrices are computed as a pre-processing step,
defined as Â = D̃−1/2ÃD̃−1/2, where Ã = A+ I and D̃ is the
degree matrix of Ã. Then, the function fgcn(·) which represents
the two-layer GCN model assumes the form:

Z = f (X,A) = so f tmax(Â ReLU(ÂXW(0))W(1)). (8)

The matrix W(0) ∈Rd×H defines the neural network weights
for an input-to-hidden layer with H feature maps, while W(1) ∈
RH×c is a hidden-to-output matrix. Both matrices W(0) and
W(1) are trained using gradient descent, considering the cross-
entropy error over all labeled nodes. vl ∈ VL.

The activation function is applied row-wise and is defined as
so f tmax(zi) =

exp(zi)
∑i exp(zi)

, where zi is the position i of embedding

zi. The softmax yields the probability distribution over the
c class labels for each row, i.e., the probability values sum up
to 1 for each row. Given an image oi, the learned embedded
representation zi is then used for classification tasks by applying
an argmax over the output of the softmax.

5. GCNs and Manifold Learning Methods

The proposed approach is flexible in the sense that it can be
instantiated by different GCN models and manifold learning
methods. This section briefly describes the GCN models and
the manifold learning methods considered in this work.

5.1. GCN Models
The original GCN (Kipf and Welling, 2017) model and more

4 variants (Bianchi et al., 2021; Klicpera et al., 2019; Wu et al.,
2019) are used in the proposed Manifold-GCN approach. The
GCN models employed are:

• Graph Convolution Network (GCN) (Kipf and Welling,
2017): the first GCN proposed, introducing the idea of
convolutions applied to graph domains, often known as
GCN-Net or simply GCN;

• Simple Graph Convolution (SGC) (Wu et al., 2019): a
simplification of the conventional GCN models which re-
moves the non-linearities and collapses weight matrix be-
tween consecutive layers;

• Graph Attention Networks (GAT) (Veličković et al.,
2018): employs auto-attention layers with the idea of solv-
ing the main shortcomings of the previous GCN models.
The layers are stacked in a way that it is possible to spec-
ify different weights for nodes of the same neighborhood
without requiring costly operations;

• Approximate Personalized Propagation of Neural Pre-
dictions (APPNP) (Klicpera et al., 2019): a model that
combines a GCN with the PageRank algorithm, deriving
a propagation strategy based on a modified PageRank ap-
proach;

• Auto-Regressive Moving Average (ARMA) Filter Con-
volutions (Bianchi et al., 2021): a GCN variant that
defines convolutional layers based on filters of Auto-
Regressive Moving Average type.

5.2. Manifold Learning Methods
Manifold learning can be broadly understood as the process

of non-linear dimensionality reduction by performing distance
learning for a set of features. In fact, images are commonly rep-
resented as points in a high-dimensional feature space. How-
ever, it has been shown that data samples often live in a much
lower dimensional intrinsic space (Jiang et al., 2011). There-
fore, how to capture and exploit the intrinsic manifold struc-
ture to compute a more effective distance/similarity measure
becomes a key task in many areas (Jiang et al., 2011). In this
work, we consider recent unsupervised manifold learning meth-
ods to provide more effective similarity measures using rank-
based approaches. Three of them are considered:
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• Log-based Hypergraph of Ranking References
(LHRR) (Pedronette et al., 2019): an algorithm that
models the input ranked lists as hypergraphs and exploits
the relations between the elements in the dataset.

• BFS-Tree of Ranking References (BFSTREE) (Pe-
dronette et al., 2021): it uses a breadth-first tree struc-
ture that models the similarity information between the
elements in the ranked lists, which is employed with the
objective of analyzing the implicit relations between the
elements of the dataset. The tree structure allows a repre-
sentation of the top-k elements such that the weights of the
edges are computed based on the correlations among the
ranked lists.

• The Rank-based Diffusion Process with Assured Con-
vergence (RDPAC) (Guimarães Pedronette et al., 2021):
it performs a diffusion process to exploit the information
contained in the ranked lists. It also presents formal proof
for the convergence of the diffusion process. The asymp-
totic complexity of the algorithm is low, which allows its
use in many different scenarios with a great number of data
elements.

6. Experimental Evaluation

This section discusses the experimental evaluation conducted
to assess the effectiveness of the proposed Manifold-GCN. Sec-
tion 6.1 describes the datasets and features considered. Sec-
tion 6.2 discusses the experimental protocol. The semi-
supervised image classification results are presented in Sec-
tion 6.3. Section 6.4 shows visualizations of feature space im-
provements, while Section 6.5 reports a comparison with both
traditional and recent state-of-the-art methods, Section 6.6 re-
ports the run-time for each step of the proposed approach.

6.1. Datasets and Features
Three public datasets were considered in the experimental

evaluation:

• Flowers17 (Nilsback and Zisserman, 2006): traditional
dataset composed of 1,360 images of 17 species of flow-
ers;

• Corel5k (Liu and Yang, 2013): 5,000 diverse images
(cars, animals, buildings, and others) divided into 100
classes;

• CUB-200-2011 (Wah et al., 2011): a popular benchmark
for image classification composed by 11,788 photos of 200
bird species;

A diverse set of deep features was considered in the con-
ducted experiments. For the general purpose datasets (Flow-
ers17, Corel5k, and CUB-200-2011), all CNNs were trained on
ImageNet (Deng et al., 2009) dataset through. The extractions
were performed with the PyTorch framework 1. In all cases, the
Euclidean distance was considered.

1https://github.com/Cadene/pretrained-models.pytorch

We also employ two different types of Vision Transform-
ers: An Image is Worth 16x16 Words Visual Transformer (VIT-
B16) (Dosovitskiy et al., 2021) 2 and Tokens-To-Token Vision
Transformer (T2T-VIT) (Yuan et al., 2021) 3. Both were trained
on ImageNet (Deng et al., 2009) dataset.

6.2. Experimental Protocol
In this work, the training data is the labeled set and the testing

data is the unlabeled set. The unlabeled data considered during
the training process comes from the test set. This protocol was
also adopted for all baselines.

For the manifold learning approach, all the data is used
for the distance learning process, which is completely un-
supervised; no labels are used. In the second step, the
semi-supervised classification by the GCN, we perform cross-
validation that, in our case, consists of a 10-fold split where one
fold is used for training and the rest is used for testing. For each
of 10 executions (one for every fold being considered as train-
ing) and 90% is considered as testing data (unlabeled data). We
highlight that, since we are running 10 executions by changing
the folds, every dataset element will be considered as training
or test at least once. Therefore, each reported value corresponds
to the mean of 50 executions (number of executions multiplied
by the number of folds).

For all the GCNs, the Adam optimizer with a learning rate of
10−5 was used, except for Cub200, in which we used a learning
rate of 10−4. Regarding the number of neurons, we used 256.
The only exceptions are GCN-SGC, which does not have this
parameter; and GCN-GAT which has a number of heads, which
was set to 32. The training processes consisted of 200 epochs,
using input graphs with k = 40. In the same way, the manifold
learning methods also have a parameter k, which is different
from the graph k. For the method k, we also used k = 40.

6.3. Classification Results
The proposed approach was evaluated on a wide diversity of

semi-supervised classification scenarios, considering 3 distinct
datasets (Flowers, Corel5k, and CUB200). For each dataset, 4
to 5 deep learning features trained on a transfer learning setting
were used, considering both CNNs and Vision Transformers ap-
proaches. For classification, 5 GCNs models are evaluated con-
sidering both the traditional and reciprocal kNN graphs. The
impact of re-ranking step is also assessed, evaluating the classi-
fication results with and without this step, considering 3 distinct
rank-based manifold learning methods. In the semi-supervised
scenario, the mean of 5 executions for 10 folds was performed.

Tables 1, 2 and 3 present the results for the datasets Flowers,
Corel5k, and CUB200, respectively. The best result for each
feature/GCN is highlighted in bold. The gray highlight is used
to indicate the best result for the corresponding GCN. The blue
color indicates the best result for the dataset (the best result in
the whole table).

Some interesting observations can be made from the experi-
mental results. In general, it can be noticed that the reciprocal

2https://github.com/faustomorales/vit-keras
3https://github.com/yitu-opensource/T2T-ViT

https://github.com/Cadene/pretrained-models.pytorch
https://github.com/faustomorales/vit-keras
https://github.com/yitu-opensource/T2T-ViT
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kNN graph outperforms the traditional kNN graph. It can be ob-
served that the use of manifold learning methods outperforms
the scenarios without its use. Moreover, the combination of re-
ciprocal kNN graph and manifold learning methods leads to the
best results for all GCN models (gray highlight) and datasets
(in blue).

Among the features, VIT-B16 yielded the best results.
Therefore, there is a correlation that shows that the better the
feature, the better the classification result. In this case, the best
feature is VIT-B16. For GCN models and manifold learn-
ing methods, the diversity is higher, but GCN-SGC and RD-
PAC achieved the best results in most of the scenarios. We
also can highlight the remarkable gains obtained on all datasets
and features from the original (kNN without re-ranking) to
the proposed approach (reciprocal kNN with re-ranking). For
CUB200, the most challenging dataset, the accuracy of GCN-
APPNP was improved from 55.24% to 75.59%.

Our method was also evaluated considering the weighted F-
Measure. Figure 2 reports the results for GCN-SGC on the tra-
ditional kNN graph (on the left) and the Reciprocal kNN graph
(on the right). For every graph, we see that using manifold
learning improves the results of the traditional GCN.

6.4. Visualization Results

In order to visualize the effectiveness of our approach, an
experiment was conducted showing the distribution of features
in a 2D space, after being processed by t-Distributed Stochas-
tic Neighbor Embedding (TSNE) (van der Maaten and Hinton,
2008). Figure 3 shows the results for (a) the original CNN-
ResNet features; (b) the GCN output with kNN graph; (c) the
GCN output with kNN graph and manifold learning; (d) the
GCN output with Reciprocal graph and manifold learning. The
Flowers-17 was chosen for this visualization due to the small
number of classes, which makes it easier to visualize the im-
provements. Each class is represented by a different combina-
tion of shape and color. Notice that the distribution of classes is
further improved when the Manifold-GCN is applied (c and d),
which is consistent with our main hypothesis.

6.5. Comparison with Other Approaches

For comparison purposes, a wide variety of supervised
and semi-supervised classification approaches were considered,
both traditional and more recent ones. A brief description of the
employed baselines, the implementations, and the parameters
used are presented in the following:

• k Nearest Neighbor (kNN): traditional approach that
computes the distance to the other elements in the dataset
and selects the k closest ones. The sklearn implementation
was used, with k = 20.

• Support Vector Machine (SVM) (Cortes and Vapnik,
1995): it is a traditional method that consists in finding
the hyperplane that best separates the data into the correct
classes in a high-dimensional space. The sklearn imple-
mentation was used, with default parameters and Radial
Basis Function (RBF) kernel.

• Single-Layer and Multi-Layer Perceptron: the sklearn
implementation was used for both, with the Stochastic
Gradient Descent (SGD) optimizer.

• Optimum-Path Forest (OPF) (Amorim et al., 2014; Papa
et al., 2009): it builds a graph where each node is an ele-
ment of the dataset and the edges are weighted by their
Euclidean distance. The algorithm computes the optimum
path between the nodes in order to classify them into a
given class. The pyOPF 4 implementation was used, with
the default parameters.

• Pseudo-label (Lee, 2013): the method is semi-supervised
and is used to assign labels to unlabeled data. In this work,
a public implementation 5 was used along with the Logis-
tic Regression classifier that employed the Stochastic Gra-
dient Descent (SGD) optimizer and Squared Hinge loss
with α = 10−5 for training.

• Label Spreading (LS) (Zhou et al., 2004): a semi-
supervised algorithm that attributes labels to elements ac-
cording to the labels of their neighbors, given a certain
degree of similarity. For this process, it uses an affin-
ity matrix based on a normalized graph Laplacian. The
sklearn implementation was used, considering a Radial
Basis Function (RBF) kernel with α = 0.4125, γ = 0.1,
and a maximum of 100 iterations. This method is used to
expand the training set and is used along with the other
classifiers.

• Learning Discrete Structures for Graph Neural Net-
works (GNN-LDS and GNN-KNN-LDS) (Franceschi
et al., 2019): this Graph Neural Network (GNN) learns
both a graph and embeddings from the input features. It
approximately solves a bilevel program that learns a dis-
crete probability distribution on the edges of the graph.
The authors claim that this is the first method that simulta-
neously learns the graph and the parameters of a GNN for
semi-supervised classification. The approach presents two
variants: (i) GNN-LDS; and (ii) GNN-KNN-LDS which
initializes by computing a kNN graph. Both were used
as baselines with their default parameters proposed in the
implementation 6 provided by the original authors. For the
kNN graph, k = 20 was used.

• Weakly Supervised Framework Experiments Frame-
work (WSEF) (Presotto et al., 2021): the method gen-
erates pseudo-labels by applying different rank correla-
tion measures (e.g., Jaccard, Spearman). The approach is
mainly based on the idea that elements that have ranked
lists with a high intersection with others probably belong
to the same class. The implementation 7 provided by
the authors was used considering Rank Biased Overlap

4https://github.com/marcoscleison/PyOPF
5https://github.com/anirudhshenoy/pseudo_labeling_small_

datasets
6https://github.com/lucfra/LDS-GNN
7https://github.com/UDLF/WSEF

https://github.com/marcoscleison/PyOPF
https://github.com/anirudhshenoy/pseudo_labeling_small_datasets
https://github.com/anirudhshenoy/pseudo_labeling_small_datasets
https://github.com/lucfra/LDS-GNN
https://github.com/UDLF/WSEF
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Table 1: Impact of manifold learning approaches (LHRR, RDPAC, BFSTREE) and Reciprocal Graph (Rec.) on the classification accuracy (%) of 5 different GCN
models on Flowers17 dataset. The best results for each feature and GCN model are highlighted in bold, the best results for each GCN model are marked with a gray
background, and the best result for the entire dataset is highlighted in blue. In all the cases, the best results used manifold learning and Reciprocal Graph.

Classifier Specification Feature

GCN Graph Re-Rank CNN-ResNet CNN-DPNet CNN-SENet T2T-VIT24 VIT-B16
(He et al., 2016) (Chen et al., 2017) (Hu et al., 2018) (Yuan et al., 2021) (Dosovitskiy et al., 2021)

G
C

N
-N

et

kNN — 79.08 ± 0.3039 76.94 ± 0.3688 72.72 ± 0.2052 69.75 ± 0.0827 92.72 ± 0.1324
kNN LHRR 84.37 ± 0.3239 80.76 ± 0.1372 73.89 ± 0.133 72.03 ± 0.1131 95.88 ± 0.0567
kNN RDPAC 83.91 ± 0.1279 81.24 ± 0.2597 74.76 ± 0.2245 74.60 ± 0.1353 96.86 ± 0.0702
kNN BFSTREE 83.12 ± 0.1784 81.39 ± 0.1222 74.83 ± 0.1284 72.49 ± 0.3283 96.33 ± 0.0695
Rec. — 83.89 ± 0.1973 81.19 ± 0.264 76.23 ± 0.1913 75.82 ± 0.2096 97.07 ± 0.0606
Rec. LHRR 84.67 ± 0.0988 80.64 ± 0.1749 73.97 ± 0.1383 72.40 ± 0.1927 95.39 ± 0.1583
Rec. RDPAC 84.20 ± 0.1975 82.27 ± 0.1659 76.61 ± 0.1968 75.87 ± 0.1877 97.16 ± 0.0168
Rec. BFSTREE 82.97 ± 0.1623 81.20 ± 0.1141 74.80 ± 0.2034 73.26 ± 0.1008 96.52 ± 0.0538

G
C

N
-S

G
C

kNN — 79.64 ± 0.1023 77.09 ± 0.1139 73.00 ± 0.0941 70.05 ± 0.0802 92.84 ± 0.0655
kNN LHRR 84.41 ± 0.0835 80.36 ± 0.0661 74.04 ± 0.0599 72.11 ± 0.113 95.85 ± 0.0285
kNN RDPAC 84.19 ± 0.0659 81.12 ± 0.0645 75.06 ± 0.0627 75.18 ± 0.0743 96.95 ± 0.0133
kNN BFSTREE 83.33 ± 0.0533 81.54 ± 0.0410 75.08 ± 0.0565 72.86 ± 0.0879 96.42 ± 0.0396
Rec. — 83.99 ± 0.0478 81.32 ± 0.0314 76.16 ± 0.0415 75.69 ± 0.0828 96.93 ± 0.0464
Rec. LHRR 84.91 ± 0.0665 80.75 ± 0.0694 74.60 ± 0.0510 72.95 ± 0.0563 95.47 ± 0.0171
Rec. RDPAC 84.53 ± 0.0580 82.53 ± 0.1335 76.93 ± 0.0376 76.43 ± 0.0499 97.11 ± 0.0163
Rec. BFSTREE 83.43 ± 0.0200 81.58 ± 0.1169 75.03 ± 0.0313 73.58 ± 0.026 96.63 ± 0.0337

G
C

N
-G

AT

kNN — 80.67 ± 0.2144 65.60 ± 0.9961 74.64 ± 0.3048 67.33 ± 0.9069 93.65 ± 0.228
kNN LHRR 84.52 ± 0.3202 76.15 ± 1.4547 75.48 ± 0.2365 73.37 ± 0.2824 95.33 ± 0.2522
kNN RDPAC 84.02 ± 0.1058 77.39 ± 1.2703 75.29 ± 0.3550 75.40 ± 0.4316 97.09 ± 0.0572
kNN BFSTREE 83.04 ± 0.1844 77.19 ± 1.833 75.82 ± 0.2086 73.26 ± 0.3184 96.41 ± 0.0465
Rec. — 83.67 ± 0.1965 77.42 ± 0.6762 76.74 ± 0.3398 74.82 ± 0.2978 96.99 ± 0.0558
Rec. LHRR 84.82 ± 0.2194 79.63 ± 0.6337 75.22 ± 0.2648 73.32 ± 0.3684 95.21 ± 0.2575
Rec. RDPAC 84.40 ± 0.1488 79.69 ± 1.0373 77.18 ± 0.2940 76.90 ± 0.3418 97.22 ± 0.0557
Rec. BFSTREE 82.79 ± 0.2926 78.74 ± 0.2682 75.94 ± 0.2681 73.85 ± 0.2632 96.55 ± 0.0881

G
C

N
-A

PP
N

P

kNN — 77.25 ± 0.1692 76.38 ± 0.238 71.0 ± 0.4051 69.45 ± 0.3072 90.24 ± 0.2128
kNN LHRR 84.58 ± 0.2621 82.53 ± 0.2443 76.83 ± 0.1622 74.32 ± 0.2989 96.05 ± 0.0421
kNN RDPAC 85.35 ± 0.2205 83.32 ± 0.1287 76.89 ± 0.3673 77.87 ± 0.0660 97.28 ± 0.0303
kNN BFSTREE 84.22 ± 0.1638 83.34 ± 0.0875 77.94 ± 0.3084 75.65 ± 0.2505 96.73 ± 0.0763
Rec. — 83.91 ± 0.1181 82.20 ± 0.2160 77.74 ± 0.1645 77.11 ± 0.1485 97.24 ± 0.0470
Rec. LHRR 85.88 ± 0.1896 82.55 ± 0.2138 76.60 ± 0.2479 75.40 ± 0.2458 95.68 ± 0.1083
Rec. RDPAC 85.41 ± 0.2304 83.99 ± 0.1276 78.82 ± 0.1466 78.01 ± 0.1307 97.43 ± 0.0699
Rec. BFSTREE 83.75 ± 0.2099 83.14 ± 0.1915 77.83 ± 0.1826 75.85 ± 0.2098 96.89 ± 0.0632

G
C

N
-A

R
M

A

kNN — 78.69 ± 0.2471 76.01 ± 0.295 73.18 ± 0.4015 70.47 ± 0.2548 91.27 ± 0.1731
kNN LHRR 84.64 ± 0.3211 81.90 ± 0.4272 76.09 ± 0.1451 74.26 ± 0.2543 95.66 ± 0.1726
kNN RDPAC 85.05 ± 0.1643 82.38 ± 0.3741 76.18 ± 0.3637 76.75 ± 0.2599 96.88 ± 0.0698
kNN BFSTREE 83.72 ± 0.0791 81.96 ± 0.3477 76.81 ± 0.1272 75.03 ± 0.1647 96.24 ± 0.0812
Rec. — 83.32 ± 0.3713 80.86 ± 0.1282 76.96 ± 0.3041 76.11 ± 0.3851 96.66 ± 0.1140
Rec. LHRR 85.36 ± 0.3818 82.17 ± 0.3283 75.92 ± 0.2516 74.64 ± 0.3728 95.13 ± 0.2118
Rec. RDPAC 84.97 ± 0.2524 83.14 ± 0.3078 77.89 ± 0.2358 77.81 ± 0.3271 97.02 ± 0.0944
Rec. BFSTREE 84.06 ± 0.2612 82.21 ± 0.1901 76.88 ± 0.1897 75.10 ± 0.3000 96.47 ± 0.1171

(RBO) (Webber et al., 2010) correlation measure, k = 40
in combination with SVM.

• CoMatch (Li et al., 2021): the method is based on
concepts of graph-based self-supervised learning. The
approach is trained to produce similar embeddings for
the same image with different augmentations. CoMatch
jointly optimizes three losses: (i) a supervised classifica-
tion loss on labeled data, (ii) an unsupervised classifica-
tion loss on unlabeled data, and (iii) a graph-based con-
trastive loss on unlabeled data. It takes images as input in-
stead of features. This version employs ResNet (He et al.,
2016) as the backbone. We considered the implementa-

tion provided by the authors 8, with default parameters (the
ones used for ImageNet (Deng et al., 2009) in their code).
We trained with a batch size of 25 and 400 epochs for all
datasets. Except for the CUB200 dataset, which is larger,
we used a batch size of 50 and 300 epochs.

We also compared our results with three CNN-based classi-
fiers, considering image data as input. The images were pro-
vided with a size of 100x100 pixels in batches of size 32. For
the other methods, the input consists of feature vectors obtained
from deep features trained through transfer learning. Notice
that the CNNs used as baselines require more labeled data in

8https://github.com/salesforce/CoMatch

https://github.com/salesforce/CoMatch
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Table 2: Impact of manifold learning approaches (LHRR, RDPAC, BFSTREE) and Reciprocal Graph (Rec.) on the classification accuracy (%) of 5 different GCN
models on Corel5k dataset. The best results for each feature and GCN model are highlighted in bold, the best results for each GCN model are marked with a gray
background, and the best result for the entire dataset is highlighted in blue. In all the cases, the best results used manifold learning.

Classifier Specification Feature

GCN Graph Re-Rank CNN-ResNet CNN-DPNet CNN-SENet T2T-VIT24 VIT-B16
(He et al., 2016) (Chen et al., 2017) (Hu et al., 2018) (Yuan et al., 2021) (Dosovitskiy et al., 2021)

G
C

N
-N

et

kNN — 89.34 ± 0.0950 86.49 ± 0.0998 89.17 ± 0.0956 89.02 ± 0.1452 89.93 ± 0.2878
kNN LHRR 91.40 ± 0.0906 88.94 ± 0.1958 90.19 ± 0.1392 90.68 ± 0.0957 94.57 ± 0.121
kNN RDPAC 91.46 ± 0.1402 89.05 ± 0.1054 90.65 ± 0.0483 91.77 ± 0.1246 94.29 ± 0.139
kNN BFSTREE 92.03 ± 0.1165 89.28 ± 0.1858 91.19 ± 0.1102 91.78 ± 0.0432 94.30 ± 0.3362
Rec. — 91.68 ± 0.1064 89.62 ± 0.1114 91.81 ± 0.1159 92.19 ± 0.0908 93.42 ± 0.1987
Rec. LHRR 91.68 ± 0.0224 88.48 ± 0.1268 90.58 ± 0.0901 91.50 ± 0.0684 94.63 ± 0.139
Rec. RDPAC 92.00 ± 0.1434 89.55 ± 0.0944 90.93 ± 0.1654 91.96 ± 0.0705 94.76 ± 0.1577
Rec. BFSTREE 92.00 ± 0.0954 89.33 ± 0.1221 91.32 ± 0.0833 92.43 ± 0.0401 94.39 ± 0.2771

G
C

N
-S

G
C

kNN — 89.62 ± 0.0321 86.78 ± 0.0256 89.81 ± 0.0426 88.95 ± 0.0482 93.36 ± 0.0401
kNN LHRR 91.19 ± 0.0262 88.74 ± 0.0242 89.90 ± 0.044 90.49 ± 0.0518 95.20 ± 0.0219
kNN RDPAC 91.47 ± 0.0216 88.95 ± 0.0632 90.70 ± 0.0403 91.77 ± 0.0521 94.76 ± 0.078
kNN BFSTREE 91.98 ± 0.0246 89.23 ± 0.0453 91.40 ± 0.0061 91.71 ± 0.0444 95.26 ± 0.0759
Rec. — 91.98 ± 0.0133 89.83 ± 0.0415 92.15 ± 0.0164 92.75 ± 0.0908 95.49 ± 0.0107
Rec. LHRR 91.73 ± 0.0508 88.70 ± 0.0669 90.73 ± 0.0235 91.68 ± 0.0305 95.57 ± 0.017
Rec. RDPAC 92.00 ± 0.0247 89.84 ± 0.1057 90.85 ± 0.0396 92.31 ± 0.072 95.50 ± 0.020
Rec. BFSTREE 92.04 ± 0.009 89.49 ± 0.0627 91.30 ± 0.0257 92.54 ± 0.0591 95.30 ± 0.0479

G
C

N
-G

AT

kNN — 90.48 ± 0.1727 83.28 ± 0.33 91.13 ± 0.1107 90.7 ± 0.1187 91.3 ± 0.1764
kNN LHRR 92.21 ± 0.1328 88.59 ± 0.4012 91.28 ± 0.2208 92.2 ± 0.0839 94.56 ± 0.1777
kNN RDPAC 91.86 ± 0.1403 89.78 ± 0.2723 91.41 ± 0.1429 92.82 ± 0.0956 94.46 ± 0.2555
kNN BFSTREE 92.42 ± 0.1008 89.61 ± 0.362 91.95 ± 0.1382 93.09 ± 0.1337 94.58 ± 0.2226
Rec. — 92.02 ± 0.0917 89.0 ± 0.2638 92.23 ± 0.0844 92.81 ± 0.113 93.64 ± 0.2373
Rec. LHRR 92.19 ± 0.1057 89.17 ± 0.2074 91.18 ± 0.1451 92.41 ± 0.1456 94.55 ± 0.1918
Rec. RDPAC 92.22 ± 0.0858 90.48 ± 0.1718 91.48 ± 0.1021 93.02 ± 0.1334 94.89 ± 0.1492
Rec. BFSTREE 92.30 ± 0.1128 90.01 ± 0.2374 91.88 ± 0.1081 93.35 ± 0.1537 94.75 ± 0.1385

G
C

N
-A

PP
N

P

kNN — 89.72 ± 0.2031 87.68 ± 0.0785 89.92 ± 0.0992 89.86 ± 0.0731 86.89 ± 0.2487
kNN LHRR 92.6 ± 0.0625 90.81 ± 0.1043 91.49 ± 0.1307 91.83 ± 0.0952 94.53 ± 0.1144
kNN RDPAC 92.69 ± 0.1161 90.75 ± 0.179 91.81 ± 0.098 92.58 ± 0.0588 94.12 ± 0.2213
kNN BFSTREE 93.04 ± 0.0872 91.01 ± 0.1026 92.35 ± 0.0535 92.83 ± 0.031 94.37 ± 0.0855
Rec. — 92.69 ± 0.05 90.70 ± 0.1301 92.79 ± 0.0429 93.56 ± 0.0669 93.53 ± 0.1042
Rec. LHRR 92.88 ± 0.1058 89.99 ± 0.0869 91.78 ± 0.0694 92.63 ± 0.0817 94.95 ± 0.2116
Rec. RDPAC 92.82 ± 0.046 90.95 ± 0.1134 91.92 ± 0.0738 93.17 ± 0.0804 95.13 ± 0.1095
Rec. BFSTREE 93.08 ± 0.0727 90.78 ± 0.1317 92.39 ± 0.0269 93.70 ± 0.0653 94.72 ± 0.1564

G
C

N
-A

R
M

A

kNN — 88.58 ± 0.312 86.47 ± 0.0729 89.11 ± 0.1061 89.16 ± 0.0571 85.48 ± 0.3945
kNN LHRR 91.58 ± 0.1185 89.84 ± 0.1565 90.98 ± 0.1738 91.46 ± 0.0963 90.66 ± 0.5051
kNN RDPAC 91.72 ± 0.1775 90.09 ± 0.2858 91.08 ± 0.1226 92.28 ± 0.0545 92.62 ± 0.4067
kNN BFSTREE 92.23 ± 0.1447 90.31 ± 0.1195 91.7 ± 0.0869 92.24 ± 0.0682 92.28 ± 0.3061
Rec. — 91.14 ± 0.137 89.24 ± 0.2139 91.31 ± 0.1887 91.84 ± 0.0774 90.48 ± 0.1707
Rec. LHRR 91.77 ± 0.1541 89.24 ± 0.1428 91.07 ± 0.126 91.78 ± 0.1145 92.39 ± 0.2078
Rec. RDPAC 92.05 ± 0.1403 90.41 ± 0.1645 91.47 ± 0.1202 92.49 ± 0.2056 92.80 ± 0.1896
Rec. BFSTREE 92.27 ± 0.0377 90.14 ± 0.1897 91.71 ± 0.1753 92.90 ± 0.1446 92.74 ± 0.2083

comparison to other methods and were evaluated on a super-
vised cross-validation scenario (9 folds for training, 1 fold for
testing). Except for CNN classifiers, all other methods were
evaluated on semi-supervised scenarios (1 fold for training, 9
folds for testing).

Table 4 presents the comparison with both traditional and
recent state-of-the-art baselines in relation to our approach on
Flowers, Corel5k, and CUB200 datasets. Most results are the
mean of 5 executions of 10 folds, with some exceptions which
are indicated in italic text. Some methods require long running
times on larger datasets (i.e., LDS and CoMatch). For GNN-
KNN-LDS, KNN-LDS, and CoMatch, the results on CUB200
correspond to 1 execution. For CoMatch, the mean of 3 ex-
ecutions is reported for Corel5k dataset. The best result for
each feature is highlighted in bold and the best for each dataset

is highlighted in red. The gray rows indicate the results that
correspond to our method.

The proposed method revealed superior results compared to
the baselines in most of the cases. The only exception is Flow-
ers with VIT-B16 features where WSEF shows the best results
(97.82% accuracy). However, our ManifoldGCN is very close
with 97.43% accuracy.

6.6. Efficiency Results

We conducted an experiment to measure the run-time (in sec-
onds) for running each of the manifold learning methods and
GCN models. The experiments were executed on a machine
with an Intel(R) Core(TM) i7-10700F CPU @ 2.90GHz, 32 GB
RAM, NVIDIA GeForce RTX 3060 GPU with 12GB VRAM
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Table 3: Impact of manifold learning approaches (LHRR, RDPAC, BFSTREE) and Reciprocal Graph (Rec.) on the classification accuracy (%) of 5 different GCN
models on CUB200 dataset. The best results for each feature and GCN model are highlighted in bold, the best results for each GCN model are marked with a gray
background, and the best result for the entire dataset is highlighted in blue. In all the cases, the best results used manifold learning.

Classifier Specification Feature

GCN Graph Re-Rank CNN-ResNet CNN-SENet CNN-Xception VIT-B16
(He et al., 2016) (Chen et al., 2017) (Chollet, 2017) (Dosovitskiy et al., 2021)

G
C

N
-N

et
kNN — 40.76 ± 0.7467 35.8 ± 0.0634 46.66 ± 0.019 64.39 ± 0.4486
kNN LHRR 49.16 ± 0.3119 36.17 ± 0.1153 51.13 ± 0.0738 70.42 ± 0.671
kNN RDPAC 49.44 ± 0.1092 36.84 ± 0.0578 51.18 ± 0.0284 72.71 ± 0.1506
kNN BFSTREE 49.18 ± 0.1011 37.10 ± 0.0482 50.62 ± 0.0639 71.54 ± 0.1888
Rec. — 49.46 ± 0.3279 39.42 ± 0.113 50.76 ± 0.0713 68.85 ± 0.3055
Rec. LHRR 51.23 ± 0.0788 36.5 ± 0.0728 51.92 ± 0.0546 73.49 ± 0.1879
Rec. RDPAC 51.57 ± 0.0999 38.57 ± 0.0712 53.12 ± 0.0596 74.39 ± 0.3061
Rec. BFSTREE 50.80 ± 0.0291 37.8 ± 0.0538 51.82 ± 0.0658 73.58 ± 0.3939

G
C

N
-S

G
C

kNN — 47.55 ± 0.0329 36.48 ± 0.0684 48.60 ± 0.0072 74.23 ± 0.0385
kNN LHRR 51.22 ± 0.0184 35.88 ± 0.0137 52.36 ± 0.0125 77.84 ± 0.0519
kNN RDPAC 51.88 ± 0.0315 37.75 ± 0.0148 52.98 ± 0.0103 78.16 ± 0.0453
kNN BFSTREE 51.66 ± 0.016 37.70 ± 0.01 52.21 ± 0.0095 77.31 ± 0.0563
Rec. — 53.71 ± 0.0362 40.31 ± 0.0255 54.0 ± 0.0054 78.03 ± 0.0428
Rec. LHRR 51.99 ± 0.0251 36.74 ± 0.0162 53.12 ± 0.0153 78.54 ± 0.0177
Rec. RDPAC 52.85 ± 0.0164 38.91 ± 0.0073 54.59 ± 0.0036 79.27 ± 0.0325
Rec. BFSTREE 52.68 ± 0.0308 38.65 ± 0.023 53.54 ± 0.0041 78.12 ± 0.0344

G
C

N
-G

AT

kNN — 41.84 ± 0.2901 32.5 ± 0.205 42.45 ± 0.1848 59.53 ± 0.5668
kNN LHRR 48.86 ± 0.1593 34.78 ± 0.1155 48.8 ± 0.246 64.02 ± 0.4082
kNN RDPAC 49.05 ± 0.1145 35.9 ± 0.1158 49.03 ± 0.1037 68.78 ± 0.2495
kNN BFSTREE 48.77 ± 0.1427 35.98 ± 0.1457 48.3 ± 0.1084 68.1 ± 0.2488
Rec. — 45.46 ± 0.1879 33.02 ± 0.1206 45.88 ± 0.16 64.82 ± 0.2582
Rec. LHRR 50.19 ± 0.0904 35.28 ± 0.1364 50.17 ± 0.1073 70.31 ± 0.0762
Rec. RDPAC 50.95 ± 0.0632 37.55 ± 0.1087 51.29 ± 0.1577 72.94 ± 0.1716
Rec. BFSTREE 49.89 ± 0.1871 36.67 ± 0.129 49.87 ± 0.1245 71.73 ± 0.1775

G
C

N
-A

PP
N

P

kNN — 29.16 ± 0.6867 30.27 ± 0.3694 42.68 ± 0.0826 55.24 ± 0.5689
kNN LHRR 47.0 ± 0.1836 34.91 ± 0.1598 48.77 ± 0.0979 66.57 ± 0.572
kNN RDPAC 47.19 ± 0.0701 35.29 ± 0.1195 47.72 ± 0.094 69.92 ± 0.2262
kNN BFSTREE 46.59 ± 0.2154 35.28 ± 0.0718 47.14 ± 0.0895 70.86 ± 0.2702
Rec. — 48.51 ± 0.1192 38.02 ± 0.0461 47.51 ± 0.0452 68.29 ± 0.0935
Rec. LHRR 51.99 ± 0.0800 37.45 ± 0.0768 51.43 ± 0.084 74.61 ± 0.0991
Rec. RDPAC 51.82 ± 0.1028 39.15 ± 0.1601 52.17 ± 0.0865 75.59 ± 0.2139
Rec. BFSTREE 50.6 ± 0.0848 38.21 ± 0.0358 50.26 ± 0.1301 74.15 ± 0.1837

G
C

N
-A

R
M

A

kNN — 38.74 ± 0.4527 32.96 ± 0.1626 42.91 ± 0.1465 60.26 ± 0.4398
kNN LHRR 47.58 ± 0.2387 34.56 ± 0.0799 49.26 ± 0.2191 67.21 ± 0.2825
kNN RDPAC 47.77 ± 0.2075 35.4 ± 0.1474 49.88 ± 0.1479 71.16 ± 0.2337
kNN BFSTREE 47.12 ± 0.3126 35.6 ± 0.1385 48.78 ± 0.0991 70.13 ± 0.4433
Rec. — 44.37 ± 0.1739 34.25 ± 0.1559 46.95 ± 0.3062 64.55 ± 0.3184
Rec. LHRR 49.29 ± 0.0987 35.22 ± 0.0891 50.38 ± 0.1318 70.05 ± 0.653
Rec. RDPAC 49.81 ± 0.2090 37.12 ± 0.1276 51.63 ± 0.1155 73.29 ± 0.34
Rec. BFSTREE 48.92 ± 0.2721 36.38 ± 0.1331 50.41 ± 0.0777 72.17 ± 0.3336

running Ubuntu 20.04 with Linux kernel 5.15.0-52-generic. Ta-
ble 5 reports the average and standard deviation of 5 executions
of 10 folds on each dataset and for the two types of graphs (kNN
and Reciprocal kNN).

Manifold Learning (M.L.) performs the pre-processing of the
GCN graph. Since these methods are not currently parallelized,
they run all on CPU. Parallelization of these approaches is out
of the scope of this paper, but rank-based methods can be par-
allelized with data parallelism as shown in other papers (Valem
et al., 2017, 2015). While the training involves both the GCN
initialization and the learning process, testing is responsible for
computing the classification of all the queries. Both training
and testing are performed on the GPU.

Notice that the execution times are very low, which indicates
that the method is fast even for the more robust GCNs. Also,
most compared methods have a costly training process. An ex-
ample is CoMatch (2021) that requires huge training times: 40
minutes on Flowers; 88.4 minutes on Corel5k; 260 minutes on
CUB200. These times are the average of executions for 100
epochs. However, CoMatch is generally recommended to be
trained for 400 epochs. These values are much higher than our
proposed approach.
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Fig. 2: Impact of manifold learning approaches on F-measure results considering GCN-SGC on different datasets and features.
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Fig. 3: t-SNE visualizations that show the feature space improvement when manifold learning and reciprocal graph were applied. Experiments were conducted on
the Flowers dataset and CNN-ResNet features. Each class is represented by a different shape and color.

7. Conclusions

In this work, we presented a novel framework, the Manifold-
GCN, for semi-supervised image classification. The approach
is flexible and allows the use of different types of GCNs, graphs,
features, and manifold learning. To the best of our knowledge,
this is the first framework that allows the combination of GCNs
with different types of manifold learning approaches for image
classification. In our work, all the manifold learning algorithms
are completely unsupervised, which is especially useful for sce-
narios where labeled data is limited.

An experimental evaluation was conducted on 3 datasets and
5 distinct deep learning features, including features obtained
by CNNs and Visual Transformers. The results validated our
main hypothesis by revealing that the manifold learning meth-
ods were capable of improving the effectiveness (accuracy and
F-Measure) in the vast majority of the cases, for different GCNs

and features. The visual analyzes show that the feature space
was significantly improved by the proposed approach. In com-
parison to both traditional and very recent state-of-the-art meth-
ods, it is clearly noticeable that Manifold-GCN is among the
best in most cases. Our approach is also very efficient and re-
quires very low execution times for training and testing.

In future work, we intend to use other types of graph models
in addition to kNN Graph and Reciprocal Graph. For this work,
the input feature and the feature used to model the graph are
the same. Since complementary features can possibly increase
results even further, we intend to evaluate cases where a differ-
ent feature can be used for the graph. We also intend to employ
Manifold-GCN in larger image collections and retrieval scenar-
ios. For efficiency purposes, it is also possible to parallelize the
implementations of manifold learning approaches.
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Table 4: Accuracy comparison (%) for baselines on Flowers, Corel5k, and CUB200 datasets. For every dataset, we compared our approach with both supervised
and semi-supervised baselines. The methods are compared with different input features. The results of our method are highlighted with a gray background; the best
results for each pair of features and dataset are marked in bold, and the best results for each dataset are in red.

Method Year Input Training Flowers Corel5k CUB200
MobileNet 2017

Supervised
86.66 90.90 35.20

ResNet50 2015 Images 85.97 91.52 31.10
CNN-Xception 2016 90.24 93.32 44.25
CoMatch 2021 Images Semi-Supervised 82.55 85.70 38.29
kNN —

Semi-Supervised

63.67 76.80 36.67
SVM 1995 80.54 88.73 48.84
OPF 2009 71.77 83.56 38.59
SL-Perceptron — 75.44 83.56 39.91
ML-Perceptron — 78.88 87.10 32.24
PseudoLabel+SGD 2013 82.69 89.76 21.67
LS+kNN 2004 ResNet 73.49 83.98 36.99
LS+SVM 2004 Features 73.53 83.26 38.70
LS+OPF 2004 72.66 82.32 39.28
LS+SL-Perceptron 2004 72.34 82.38 39.21
LS+ML-Perceptron 2004 73.03 82.53 39.68
GNN-LDS 2019 54.98 62.69 —
GNN-KNN-LDS 2019 79.32 88.94 37.78
WSEF+SVM+RBO 2021 85.12 91.68 52.17
SGC+Rec.+RDPAC Ours 84.53 92.00 52.85
ManifoldGCN (best result) Ours 85.88 93.08 52.85

kNN —

Semi-Supervised

48.71 58.78 22.23
SVM 1995 73.30 85.89 35.32
OPF 2009 64.00 81.33 30.94
SL-Perceptron — 71.84 82.28 36.39
ML-Perceptron — 72.62 86.90 32.15
PseudoLabel+SGD 2013 76.87 89.85 20.96
LS+kNN 2004 SENet 58.05 72.16 20.00
LS+SVM 2004 Features 59.84 72.79 24.82
LS+OPF 2004 59.25 72.20 25.38
LS+SL-Perceptron 2004 59.27 72.19 25.41
LS+ML-Perceptron 2004 59.39 72.24 25.72
GNN-LDS 2019 52.24 65.80 —
GNN-KNN-LDS 2019 73.69 89.95 —
WSEF+SVM+RBO 2021 76.16 89.74 36.49
SGC+Rec.+RDPAC Ours 76.93 90.85 38.91
ManifoldGCN (best result) Ours 78.82 92.79 40.31

kNN —

Semi-Supervised

91.91 81.19 56.62
SVM 1995 96.75 91.92 75.61
OPF 2009 96.50 90.02 73.27
SL-Perceptron — 75.79 82.15 70.84
ML-Perceptron — 92.59 74.41 12.02
PseudoLabel+SGD 2013 96.84 89.07 30.19
LS+kNN 2004 VIT-B16 95.74 89.63 66.15
LS+SVM 2004 Features 94.49 87.59 66.81
LS+OPF 2004 94.22 86.14 66.68
LS+SL-Perceptron 2004 93.71 86.31 65.45
LS+ML-Perceptron 2004 95.13 87.68 62.81
GNN-LDS 2019 72.03 56.33 22.75
GNN-KNN-LDS 2019 96.66 88.56 52.42
WSEF+SVM+RBO 2021 97.82 94.00 78.64
SGC+Rec.+RDPAC Ours 97.11 95.50 79.27
ManifoldGCN (best result) Ours 97.43 95.57 79.27
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Table 5: Execution time (in seconds) for manifold learning methods and GCN
approaches for both training and testing.

Flowers Corel5k CUB200

M
.L

. LHRR 1.10 ± 0.0012 6.21 ± 0.0017 20.16 ± 0.0108
RDPAC 4.66 ± 0.0195 41.74 ± 0.0158 104.18 ± 0.5091
BFSTREE 9.34 ± 0.0046 37.94 ± 0.1712 95.09 ± 0.0704

Tr
ai

n

GCN-Net (kNN) 0.76 ± 0.0187 2.23 ± 0.0178 6.95 ± 0.0141
GCN-Net (Rec.) 0.61 ± 0.0016 1.57 ± 0.0018 4.40 ± 0.0003
GCN-SGC (kNN) 0.15 ± 0.0005 0.20 ± 0.0011 0.54 ± 0.0006
GCN-SGC (Rec.) 0.14 ± 0.0003 0.19 ± 0.0022 0.51 ± 0.0002
GCN-GAT (kNN) 3.41 ± 0.0021 11.89 ± 0.0031 30.62 ± 0.0095
GCN-GAT (Rec.) 2.44 ± 0.0025 7.90 ± 0.0029 19.35 ± 0.0043
GCN-APPNP (kNN) 0.77 ± 0.0088 3.49 ± 0.0032 27.95 ± 0.0025
GCN-APPNP (Rec.) 0.75 ± 0.0002 2.44 ± 0.0032 17.11 ± 0.0032
GCN-ARMA (kNN) 3.84 ± 0.0064 14.45 ± 0.0215 47.8 ± 0.0146
GCN-ARMA (Rec.) 2.80 ± 0.0051 9.94 ± 0.0013 30.51 ± 0.0113

Te
st

GCN-Net (kNN) 0.06 ± 0.0366 0.18 ± 0.0382 0.40 ± 0.0327
GCN-Net (Rec.) 0.05 ± 0.0013 0.18 ± 0.002 0.44 ± 0.0029
GCN-SGC (kNN) 0.04 ± 0.0015 0.16 ± 0.0011 0.38 ± 0.0051
GCN-SGC (Rec.) 0.05 ± 0.0015 0.18 ± 0.0018 0.44 ± 0.0005
GCN-GAT (kNN) 0.04 ± 0.001 0.15 ± 0.0009 0.38 ± 0.004
GCN-GAT (Rec.) 0.05 ± 0.0015 0.18 ± 0.002 0.44 ± 0.0032
GCN-APPNP (kNN) 0.05 ± 0.0015 0.15 ± 0.0008 0.38 ± 0.0045
GCN-APPNP (Rec.) 0.05 ± 0.0015 0.18 ± 0.0021 0.44 ± 0.0026
GCN-ARMA (kNN) 0.04 ± 0.0015 0.15 ± 0.0008 0.39 ± 0.0036
GCN-ARMA (Rec.) 0.04 ± 0.0018 0.18 ± 0.0023 0.44 ± 0.0004
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