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Abstract

Contextual information, defined in terms of the proximity of feature vec-

tors in a feature space, has been successfully used in the the construction

of search services. These search systems aim to exploit such information to

effectively improve ranking results, by taking into account the manifold dis-

tribution of features usually encoded. In this paper, a novel unsupervised

manifold learning is proposed through a similarity representation based on

ranking references. A breadth-first tree is used to represent similarity infor-

mation given by ranking references and is exploited to discovery underlying

similarity relationships. As a result, a more effective similarity measure is

computed, which leads to more relevant objects in the returned ranked lists

of search sessions. Several experiments conducted on eight public datasets,

commonly used for image retrieval benchmarking, demonstrated that the pro-

posed method achieves very high effectiveness results, which are comparable

or superior to the ones produced by state-of-the-art approaches.
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1. Introduction

How to effectively retrieve image objects from large collections? This

basic research question has been extensively addressed by researchers in the

past 25 years. Typical solutions range from traditional textual description

indexing schemes based on database technologies to approaches that rely on

sophisticated semantic-aware image content description strategies.

The use of content-based image retrieval (CBIR) systems relies on two

basic steps: the image content description itself and the ranking of collection

images according to their similarity to a query object. The image content

description refers to a set of approaches, which is concerned with the repre-

sentation of an image as a point in an n-dimensional space [1]. The ranking

step, in turn, relies on assessing how close representations (features) of col-

lection objects are from the query point in the feature space. The closer the

features are, the more similar two images are assumed to be.

Which image representation is more appropriate for supporting image

retrieval by content? Traditional approaches often took advantage of content

visual properties based on global shape, color, and texture; or local and mid-

level representations. State-of-the-art image content description has focused

on data-driven learning approaches, usually based on neural networks [2, 3].

Regardless the content description used [4], however, effective ranking also

depends on the utilization of effective distance/similarity functions. Direct

pairwise comparisons of points in the feature space, often based on Euclidean-

like distance functions, are common practices in several ranking approaches

in the literature. Despite being popular, those strategies fail to produce

effective results, when data points are spread over the feature space in very

complex arrangements, usually referred as manifold.

In this scenario, some methods aim at ranking collection objects with
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respect to the intrinsic manifold structure [5]. Such class of learning/ranking

algorithms are broadly based on the assumption that data is sampled from

a low dimensional manifold embedded in a higher dimensional Euclidean

space [6]. Usually, the motivation is to avoid handling the large dimension-

ality of a feature space in contrast with the intrinsic dimensionality of the

data manifold, which is small [7]. In addition, many datasets have under-

lying cluster or manifold structure, in which nearby data points, or points

belonging to the same cluster or manifold, are very likely to share the same

semantic label [8]. Therefore, computing more globally measures in order to

taking into account such information consists in an effective way to improve

the effectiveness of image retrieval/ranking tasks.

In fact, a family of post-processing methods has been proposed to en-

code the underlying structure of the dataset manifold [1, 7, 9–11]. A typ-

ical advantage of such approaches consists in their capacity of redefining

the distance/similarity in a completely unsupervised manner. Unsupervised

methods are commonly based on diffusion process [1, 7, 9, 10] and graph

learning [12] approaches. Mainly due to the high computational costs asso-

ciated with diffusion-based approaches, rank-based methods [11, 13–17] have

attracted a lot of attention recently.

In this paper, a novel unsupervised manifold learning is proposed centered

on a rank-based similarity representation. A Breadth-First Search (BFS)

Tree is used to represent the Ranking References among images. The tree

representation provides a hierarchical representation of top-k ranking in such

a way that edge weights are computed based on rank correlations. Two levels

of ranking references are encoded on the tree and each image is represented

according to its path to the root. Subsequently, the structure of the tree

is exploited to discovery underlying similarity relationships. In this way,
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similarity connections are established among nodes and leaves, which are not

initially connected by ranking references. The discovered relationships allow

to recompute the similarity measure among images. As a result, based on

a more effective similarity measure, the effectiveness of retrieval tasks are

improved.

Although various unsupervised post-processing methods have been pro-

posed recently for retrieval scenarios [7, 10, 16–20], our approach presents

remarkable novelties. The primary contribution in face of related methods

consists in the representation of similarity information in terms of a BFS-Tree

of Ranking References, as well as the use of this data structure for discov-

ering similarity relationships. While the analysis of ranked lists [16, 17] and

graph-based approaches [18–20] has already been exploited, to the best of our

knowledge this is the first initiative relying on trees of ranking references in

order to derive an unsupervised manifold learning algorithm. Besides that,

the proposed method uses recently proposed rank-based procedures as pre

and post-processing steps in order to achieve more effective retrieval results.

An extensive experimental evaluation was conducted to assess the effec-

tiveness of the proposed method on image retrieval tasks. Experiments were

conducted on eight public datasets of different sizes and considering different

retrieval scenarios. The experiments also considered diverse visual features,

including global, data-driven ones, and hash-based approaches. Achieved

results demonstrate consistently that the proposed approach can achieve

effectiveness gains in diverse situations, reaching gains up to +62%. The

method is also evaluated in comparison with state-of-the-art post-processing

and retrieval approaches, achieving better or comparable results.

The paper is organized as follows: Section 2 formally defines the problem

and the rank model while Section 3 presents the proposed manifold learn-

4



ing algorithm. Section 4 presents the experimental evaluation conducted.

Finally, Section 5 outlines our conclusions and directions for future work.

2. Rank and Retrieval Model

This section introduces the image retrieval and ranking model used in this

work. A ranking-centered formulation presented in other works [18, 20, 21]

is used. Let C={img1, img2, . . . , imgn} be an image collection, where n

denotes the size of the collection. Let D be an image descriptor defined as

a tuple D = (ε, ρ), where: ε: Î → Rn is a function, which extracts a feature

vector vÎ from an image Î; and ρ: Rn × Rn → R+ is a distance function

that computes the distance between two images according to the distance

between their corresponding feature vectors.

Therefore, a distance between two images imgi, imgj can be computed

by ρ(ε(imgi), ε(imgj)). For readability purposes, the notation ρ(i, j) is used

along the paper for denoting the distance between images imgi and imgj.

Notice that, although the model is defined in terms of image objects, it can

be easily extended to handle different data types (e.g., videos, time series).

Grounded on the distance function ρ, a ranking and retrieval model can be

derived. A general image retrieval tasks can be modeled as the computation

of a ranked list τq in response to a query image imgq, according to the distance

function ρ. The top positions of ranked lists are expected to contain the most

relevant images with regard to the query image, such that only the top-L

ranked images are considered, with L� n.

The ranked list τq can be formally defined as a permutation (img1, img2,

. . . , imgL) of the subset CL ⊂ C, which contains the L most similar images to

query image imgq, such that and |CL| = L. A permutation τq is a bijection

from the set CL onto the set [nL] = {1, 2, . . . , L}. For a permutation τq, we
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interpret τq(i) as the position (or rank) of image imgi in the ranked list τq.

If imgi is ranked before imgj in the ranked list of imgq (τq(i) < τq(j)), then

ρ(q, i) ≤ ρ(q, j).

Taking each collection image as a query image, a set of ranked lists T =

{τ1, τ2, . . . , τn} can be obtained. The set T encodes a rich source of simi-

larity/dissimilarity information about the collection C, once each ranked list

establishes a similarity relationship among the query image and all collection

images. The purpose of the proposed manifold learning algorithm is to ex-

ploit such information in order to improve the effectiveness of image retrieval

tasks.

3. BFS-Tree of Ranking References for Manifold Learning
While traditional content-based retrieval approaches are based on pair-

wise distance or similarity measures, manifold learning strategies discovery

and encode the underlying dataset geometry in order to compute more global

measures. For this purpose, a central challenge consists in obtaining effec-

tive and efficient representations capable of encoding relevant inter-object

similarity information present in a dataset.

In this paper, we propose to represent the similarity information by ex-

ploiting a Breadth-First Search (BFS) Tree of Ranking References. Consid-

ering a graph defined by ranking references, the proposed tree is constructed

as a result to a breadth-first search. Given a query image taken as the root

of the tree, the first level is defined by ranking references to the top-k similar

images to the query. Subsequently, the next levels are defined by the ranked

references of each of top-k images.

The Breadth-First Search is used due to its capacity of representing the

similarity information between the query image (q-root), its k-neighborhood

and its respective neigbhors in a graph structure. Actually, the co-occurrence
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of images at different levels of the tree structure represents a strong indication

of similarity, while a single (or low) occurrence indicates noise or wrong re-

trieval results. There are different graph-based strategies which have been ex-

ploited for post-processing methods, including shortest-path propagation [12]

and connected components [18]. However, the BFS-trees represent a very ef-

fective and efficient structure for the representation task.

Figures 1 and 2 illustrate the construction of the proposed BFS-Tree of

Ranking References for a query image imgq. Figure 1 presents the ranked

lists retrieved for the query image and for each image from its neighborhood

set. Figure 2, in turn, illustrates the relationships given by ranking refer-

ences (black lines) and the implicit similarity relationships encoded by the

tree (dashed red lines). As we can observe, the key role of the BFS-Tree rep-

resentation consists in allowing the discovery of new similarity relationships.

A novel algorithm is proposed by exploiting the BFS-Tree representation,

in order to compute a more general and effective similarity measure. The

algorithm is organized through four main steps:

1. Pre-Processing (Rank Normalization): the ranked lists are pre-

processed through a two-step rank normalization procedure;

2. BFS-Tree of Ranking References: a representation of the dataset

is constructed based on BFS-trees of ranking references;

3. BFS-Tree Similarity: a more global similarity measure is computed

by exploiting the information encoded in the BFS-trees;

4. Post-Processing (Rank Diffusion): a post-processing step based on

a rank diffusion approach is conducted to spread similarity information

and improve the final retrieval accuracy.

Each step of the algorithm is detailed and defined in next sections.
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Figure 1: The ranked lists for a given query image (within green border) and for each

image from its neighborhood set.

τq
imgq

τi
imgi imgj

τj
imgl

imgx imgy imga imgb
Figure 2: BFS-Tree of Ranking References in an image retrieval session: the continuous

black lines represent the similarity information defined by the ranked lists. The dashed

red lines represent the new similarity relationships discovered by the proposed approach.
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3.1. Rank Normalization

Since each ranked list establishes an independent similarity relationship,

the rank references are not symmetric. Therefore, an image imgi well ranked

for a query image imgq does not imply that imgq is well ranked in the ranked

list of imgi. The objective of the rank normalization is to increase the sym-

metry of the k-neighborhood, improving the results of retrieval tasks. In

fact, various approaches showed the benefits of improving the symmetry of

the k-neighborhood for retrieval tasks [18, 22].

The proposed method employs a two-step normalization approach ex-

ploiting both mutual [16] and reciprocal [11] neighborhoods. Although both

methods analyze the agreement between different ranked lists, the strategy

used is different, which can impact the retrieval results. While the mutual

neighborhood considers rank positions from both rank references, the recip-

rocal neighborhood uses only the most pessimistic estimation, given by the

maximum position.

The first normalization is combined with the subsequent step by updat-

ing the ranked lists through a stable sorting algorithm. In general, the sec-

ond step can benefit from symmetry improvements already achieved. More

specifically, the reciprocal normalization provides a stronger indication of

similarity, especially when both ranked lists agree at top positions. On the

other hand, it is more susceptible to outliers, since only one lower position

defines the score. In this way, the objective is to improve symmetry of rank-

ing similarities firstly by the mutual normalization, which is less susceptible

to outliers. Next, we apply the reciprocal normalization in order to obtain a

stronger indication of similarity.

Firstly, a mutual rank distance ρm based on the mutual neighborhood is

defined as:
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ρm(i, j) = τi(j) + τj(i), (1)

where τi(j) ≤ L. Given the new distance ρm, the ranked lists are updated by

a stable sorting algorithm until the top-L positions. Subsequently, another

normalization is performed using a reciprocal neighborhood and deriving a

reciprocal rank distance ρr, as follows:

ρr(i, j) = max(τi(j), τj(i)). (2)

A re-sorting procedure is conducted through a stable algorithm until the

L-th position, giving rise to the final set of ranked list used by the BFS-Tree

algorithm.

3.2. BFS-Tree of Ranking References

The proposed tree is defined in terms of the k-neighborhood of collection

images. Therefore, first we present a formal definition of the k-neighborhood

set of a given image imgq:

Nk(q) = {R ⊆ C, |R| = k ∧ ∀x ∈ R, y ∈ C −R : ρr(q, x) 6 ρr(q, y)}, (3)

where ρr denotes the rank distance defined by the normalization step.

A BFS-Tree of Ranking References is constructed based on a query image

imgq, which represents the root of the tree (referred to as q-root). The tree

is formally defined as a weighted undirected graph Gq = (Vq, Eq, w), where

Vq denotes the vertex set, Eq denotes the edge set, and a positive weighting

function w(e), that associates weights with edges e ∈ Eq.

The set of vertices Vq is given by union of the q-root, the neighborhood

set of imgq and its respective k-neighbors. Due to the possibility of co-

occurrence of the same image in distinct neighborhood sets of the tree, a
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discriminative notation is used to differentiate the same image in different

nodes of the graph. Let imgi and imgj be neighbors of imgq. Let imgz be an

image contained in the neighborhood sets of imgi and imgj (imgz ∈ Nk(i)∩
Nk(j)). Two nodes are created in the graph to represent such relationships:

zi and zj, where the subscript notation denotes the antecessor in the tree of

ranking references. Only the q-root is represented by q, without the subscript

notation. Formally the set of vertices Vq can be defined as:

Vq = {q} ∪ {iq | imgi ∈ Nk(q)} ∪ {xi | imgx ∈ Nk(i) ∧ imgi ∈ Nk(q)} (4)

The edge set Eq is defined considering two levels of neighborhood sets.

The two levels of neighborhood sets refer to the neighborhood of q-root, and

the neighborhood of each q-root’s neighbor. Once the k-neighborhood is

considered for each neighbor of the q-root’s neighbor, a total of k2 edges are

considered. Formally, the edge set Eq is defined as follows:

Eq = {(q, iq) | imgi ∈ Nk(q)} ∪ {(iq, xi) | imgx ∈ Nk(i) ∧ imgi ∈ Nk(q)}.

(5)

Figure 3 illustrates the BFS-Tree of Ranking References. The function

w(·, ·) defines a weight for the similarity relationship defined by the tree. The

continuous black lines represent the edges defined by the BFS-Tree. The

dashed lines represent new similarity relationships which can be inferred by

analyzing the tree. Section 3.3 discusses how these relationships are exploited

for defining a new similarity function among images.

The function w(·, ·) is computed by a recently proposed rank correla-

tion measure [23] based on a probabilistic model. The Rank-Biased Overlap

(RBO) [23] compares the overlap of two rankings at incrementally increasing

depths. This measure takes a parameter that specifies the probability of con-

sidering the overlap at the next level. The weight of the overlap measured at
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q

iqτq jq

xi yi

w(q,iq)

w(iq,xi)

w(q,iq) · w(iq,xi)

τi
k

w(q,jq)

w(iq,yi)

w(q,iq) · w(iq,xi)s(xi) s(yi)

s(xi) · s(yi) s(yi) · s(jq)

BFS-Tree Edges 
Similarity to q-Root
New Relationships

s(iq) · s(jq)
q q-Root s(iq) s(jq)

Figure 3: BFS-Tree of Ranking References: tree edges defined by ranked lists and new

similarity relationships discovered.

q

iqτq jq

xi yi
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0.7

0.42

τi
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0.5

0.4

0.24

0.11 0.12

0.3 w(q,iq)=0.6w(q,jq)=0.5w(iq,xi)=0.7w(iq,yi)=0.4

BFS-Tree Edgesby RBO Measure

Figure 4: Example of similarity scores defined by the BFS-Tree representation.
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each depth is computed based on these probabilities. The rank correlation

score is defined in the interval [0,1] as follows:

w(q, i) = (1− p)
k∑

d=1

pd−1 × |Nk(q) ∩Nk(i)|
d

, (6)

where p is a constant, which determines the strength of the weighting to top

ranks.

3.3. BFS-Tree Similarity

The objective of the proposed manifold learning algorithm is to exploit

the BFS-Tree to define a new and more effective similarity measure. The

BFS-Tree is defined based on relationships given by the neighborhood sets.

However, many other relationships can be inferred based on the structure of

the tree, allowing the extraction of relevant information about the dataset

manifold.

Firstly, a similarity function given by s(·) defines the similarity between

any node in the BFS-Tree and the q-root. The main idea consists in taking

into account the similarity weight of the path which leads to the q-root. For

the neighbors of q-root, such similarity is directly defined by the function

w(·, ·). Figure 3 illustrates the neighbors of q-root on the first level of the

tree, given by the ranked list τq, which contains images imgi and imgj (in

orange).

For other elements, the similarity is computed by the multiplication of

weights contained in the path. The reason consists in defining a smaller sim-

ilarity score to images far from the q-root. The edges named as “similarity to

q-root” refer to edges between the q-root and its neighbors of neighbors. The

“new relationships” refer to edges between nodes at same level or different

levels of the tree. Since the function w(·, ·) is defined in the interval [0,1],

the value of s(·) tends to be smaller in such cases. Figure 3 illustrates this
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situation by dashed green lines, on the second level of the tree which is given

by the ranked list τi (images imgx and imgy). An example of instanced tree

with computed values is illustrated in Figure 4.

Formally, the function s(·) can be defined as:

s(xy) =


1, x = q

w(q, xq), y = q ∧ imgx ∈ Nk(q)

w(q, yq)× w(yq, xy), x, y 6= q ∧ imgy ∈ Nk(q) ∧ imgx ∈ Nk(y)

0, xy /∈ Vq
(7)

Once the similarity between any tree node and the q-root is defined by

s(·), this information is exploited to define a similarity between any pairs

of images in the tree. Let imgi and imgj be images in the tree, such that

imgi, imgj ∈ V q. The similarity between imgi and imgj according to the

tree defined by q-root is given by σq(i, j). The function σq is computed by

the sum of products of similarities of imgi and imgj to q-root considering

different predecessors, formally defined as follows:

σq(i, j) =
∑

x,y∈Vq

s(ix)× s(jy) (8)

A more global similarity score between imgi and imgj is computed by

taking into account the similarity score defined by all dataset images taken

as q-roots. Considering all trees in which images imgi and imgj occur, a

function σa(i, j) is computed as follows:

σa(i, j) =
∑

imgq∈C

σq(i, j) (9)

Formally, all the images in the collection are taken as queries (imgq ∈ C)
for computing Equation 9. However, the value of σq(i, j) is greater than zero

only for trees in which imgi and imgj appear. In this way, as new queries

14



come, there are two options: (i) compute the algorithm considering the whole

dataset or; (ii) compute incrementally by exploiting data structures to iden-

tify only the trees that contain imgi and imgj.

3.4. Rank Diffusion

Diffusion processes have been established as a traditional and relevant

post-processing tool for improving the image retrieval effectiveness [10]. Such

approaches operate on affinity graphs for capturing the intrinsic manifold

structure of datasets. In general, diffusion processes consider as input a

pairwise affinity matrix W , which encodes the similarity relationships among

images. Based on the edge weights defined by the matrix W , the diffusion

processes spread the affinities through the graph. A more global similarity

measure is defined between pairs of vertices in terms of their connectivity.

As a result, more effective retrieval results can be obtained.

More recently, several rank-based approaches have been proposed for

post-processing tasks, with objectives similar to diffusion process. While such

methods achieve comparable effectiveness results, they present very positive

efficient aspects, since the processing costs can be constrained to top-ranking

positions. In [21], a rank-diffusion approach was proposed, where an iteration

of the diffusion process is approximated through the product of similarities

of common top-rank positions.

In this work, our motivation is to use the BFS-tree similarity model jointly

with a single rank diffusion iteration in order to further improve the effective-

ness. The a single iteration is performed by post-processing the computed

similarity function σa. The new similarity function σr(i, j) takes into account

the similarity to the common top-L positions of imgi and imgj. The function

σr is formally defined as:

15



σr(i, j) =
∑

x ∈ NL(i)∩NL(j)

σa(i, x)× σa(j, x) (10)

Finally, the function σr is used to compute the final post-processed ranked

lists through a stable sorting step.

3.5. Rank Fusion

Despite the continuous advances in image features, the visual content is

diversified and often requires different features to encode all available in-

formation. In fact, diverse visual retrieval has been proposed in order to

represent diverse and complementary aspects about images [4]. Therefore,

a natural and relevant research venue consists in combining the different

features to reach more effective retrieval results.

In this scenario, a rank fusion approach is proposed by exploiting the

capacity of the BFS-Tree representation in capturing the dataset manifold.

Based on the captured similarity information, a multiplicative approach in-

spired by [16] is used. Let the notation σr,c denotes the function σr computed

for the current feature c and let d denotes the number of features being ag-

gregated, the fused similarity function σf is defined as:

σf (i, j) =
d∏

c=1

(1 + σr,c(i, j)). (11)

Based on the fused similarity score σf , a single set of ranked lists can be

computed based on a sorting procedure.

4. Experimental Evaluation

A comprehensive experimental evaluation was conducted with the aim of

assessing the effectiveness of the proposed method. Diverse retrieval scenarios
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were considered, including various public datasets and several image descrip-

tors, based on global, local, and deep-learning based features. A rigorous

experimental protocol was adopted, involving analysis of parameters, statis-

tical and visual analysis and comparison with state-of-the-art approaches.

This section is organized as follows: Section 4.1 depicts the experimen-

tal protocol, describing the datasets, features, and measures adopted. The

impact of parameters is analyzed in Section 4.2. Section 4.3 describes the

results obtained on shape, color, and texture retrieval tasks. Section 4.4 dis-

cusses the experimental results on natural image retrieval tasks, considering

different datasets. Section 4.5 evaluates the proposed method on larger

datasets and in conjunction with hash-based approaches. A visual and ef-

ficiency analysis is presented in Section 4.6. Finally, Section 4.7 presents a

comparison with related methods conducted on three datatasets.

4.1. Experimental Protocol

The adopted experimental protocol was defined with the purpose of evalu-

ating the proposed method on different conditions. Thus, six public datasets

with diverse content, size, and characteristics were considered. Table 1

presents a brief description of selected datasets. All datasets used all im-

ages as queries, except for Holidays [24], which defines a specific protocol

with 500 queries.

An analogous criterion was employed regarding the selection of image

descriptors. Diverse image descriptors of different types were considered,

including local, global, and convolutional neural network-based features.

Hashing techiniques and indexing structures were also considered for larger

datasets, as described in Section 4.5. The diversity of conditions aims at

evaluating the capacity of the proposed manifold learning algorithm in ob-

taining effectiveness enhancements on different scenarios. The descriptors
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Table 1: Description of datasets considered in the experimental evaluation.

Dataset Size Type General Effectiv.

Description Measure

MPEG-7 [25] 1,400 Shape A popular dataset containing 1400 shapes divided into

70 classes. Commonly used for evaluation of post-

processing methods.

MAP,

Recall@40

Soccer [26] 280 Color

Scenes

Images from 7 soccer teams, containing 40 images each

team.

MAP

Brodatz [27] 1,776 Texture A well-known dataset for texture retrieval evaluation

composed of 111 textures divided into 16 blocks.

MAP

Holidays [24] 1,491 Scenes Commonly used as image retrieval benchmark, the

dataset is composed of 1,491 personal holiday pictures

with 500 queries.

MAP

Corel5K [28] 5,000 Objects/

Scenes

Composed of 50 categories with 100 images each class,

including diverse scene content such as fireworks, bark,

microscopy images, tiles, trees, etc.

MAP

UKBench [29] 10,200 Objects/

Scenes

Popular benchmark, composed of 2,550 objects or

scenes. Each object/scene is captured 4 times from

different viewpoints, distances, and illumination condi-

tions.

N-S

Score

CIFAR-10 [30] 60,000 Animals/

Objects

Dataset composed of images of animals and transporta-

tion means organized into 10 classes, with 6,000 images

per class.

MAP

ALOI [31] 72,000 Objects Images from 1,000 classes of objects, with different view-

point and illumination.

MAP

used for each dataset are presented in Table 2.

Regarding effectiveness measures, the Mean Average Precision (MAP) is

considered for most of experiments. In addition, the N-S score [29] is used

for the UKBench [29] dataset, while the Recall at 40 (bull’s eye score) for

the MPEG-7 [25] dataset.

In order to evaluate the impact of algorithm, the relative effectiveness

gains are also reported. The relative gain is defined as G = (Ma −Mb)/Mb,

18



Table 2: Image descriptors considered for each dataset.

Dataset Image Features Type

Soccer [26] Auto Color Correlograms (ACC) [32], Border/Interior Pixel Clas-

sification (BIC) [33], Global Color Histogram (GCH) [34]

Color

MPEG-7 [25] Articulation-Invariant Representation (AIR) [35], Aspect Shape

Context (ASC) [36], Beam Angle Statistics (BAS) [37], Contour

Features Descriptor (CFD) [38], Inner Distance Shape Context

(IDSC) [39], Segment Saliences (SS) [40]

Shape

Brodatz [27] Color Co-Occurrence Matrix (CCOM) [41], Local Activity Spec-

trum (LAS) [42], Local Binary Patterns (LBP) [43],

Texture

Corel5K [28] ACC [32], ACC Spatial Pyramid (ACC-Spy) [32, 44], Color and

Edge Directivity Descriptor Spatial Pyramid (CEED-Spy) [44, 45],

Convolutional Neural Network by Caffe [2] (CNN-Caffe), FCTH

Spatial Pyramid (FCTH-Spy) [44, 46], Joint Composite Descriptor

Spatial Pyramid (JCD-Spy) [44, 47], and Local Binary Patterns

Spatial Pyramid (LBP-Spy) [43, 44]

Color,

Texture,

CNN

Holidays [24] Joint Composite Descriptor (JCD) [47],

ACC [32], Color and Edge Directivity Descriptor Spatial Pyra-

mid (CEED-Spy) [44, 45], Convolutional Neural Network by

Caffe [2] (CNN-Caffe), Convolutional Neural Network by Over-

Feat [3] (CNN-OverFeat), Scalable Color Descriptor (SCD) [48]

Color,

Texture,

BoVW,

CNN

UKBench [29] CEED-Spy [44, 45], ACC [32], ACC Spatial Pyramid (ACC-

SPy) [32, 44], CNN-Caffe [2], Fuzzy Color and Texture Histogram

Spatial Pyramid (FCTH-SPy) [44, 46], SCD [48], Vocabulary Tree

(VOC) [49]

Color,

Texture,

BoVW,

CNN

CIFAR-10 [30] CNN-NASNET [50], CNN-DPN92 [51], CNN-RESNET [52],

Deep Cauchy Hashing (DCH) [53] , Deep Triplet Quantization

(DTQ) [54]

CNN,

Hashing

ALOI [31] CNN-NASNET [50], CNN-VGG16 [55], CNN-DPN92 [51], CNN-

RESNET [52], Deep Cauchy Hashing (DCH) [53] , Deep Triplet

Quantization (DTQ) [54]

CNN,

Hashing

where Mb and Ma denote respectively the effectiveness before and after the

execution of the manifold learning algorithm.
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4.2. Impact of Parameters

This section aims at assessing the robustness of the proposed method with

regard to different parameters settings. Three parameters are evaluated: k,

which defines the neighborhood size; p which is a parameter related to the

RBO measure and; and L, which defines the size of ranked lists.

In fact, the BFS-Tree algorithm requires only one parameter k, since the

size of ranked lists L defines a trade-off between effectiveness and efficiency.

Therefore, the neighborhood size is very relevant, once the BFS tree coverage

is defined by the parameter k. Figure 5 analyses the impact of k on effec-

tiveness for the MPEG-7 dataset considering four shape descriptors (AIR,

ASC, CFD, and IDSC). The effectiveness was evaluated through the MAP

measure. As we can observe, the produced curve is very stable. Most of

the susceptibility to variations occur on the beginning of the curve, for small

values of k. For greater values, only very small fluctuations can be noticed,

demonstrating a low sensibility of the method to various parameters settings.

Figure 6 presents an analogous analysis for parameter L. The obtained

results are very similar, which most of effectiveness variations occurring for

small values of L. Another experiment also analyzed the impact of parameter

p, evaluated along with the neighborhood size k in Figure 7. The parameters

were varied in the intervals [0.55,1] and [5,40], respectively, for p and k. For

each pair, the MAP obtained is reported. A large red surface can be observed,

demonstrating the robustness of the proposed method. We used p=0.7 and

k=20 for most of experiments, except for UKBench [29] and Holidays [24],

which used k=5 and p=0.9.

The UKBench and Holidays datasets used different parameters settings

in comparison with other datasets due to the very small number of images

per class. The UKBench dataset, for instance, is composed of categories
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Figure 5: Impact of neighborhood size.
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Figure 6: Impact of size of ranked lists.

Figure 7: Analysis of conjoint impact of parameters k and p.

with only 4 images per category. Actually, datasets with small number of

images per class impose very challenging scenarios for unsupervised manifold

learning algorithms. In addition, the experimental protocol is very similar
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to other works [18, 56], which use different neighborhood sizes for UKBench

and Holidays datasets. The parameter p regulates the weight of top-positions

on the RBO correlation measure and is directly associated with the size of

neighborhood k. For small number of images per class, the weight varies

more smoothly, with higher values (p=0.9).

4.3. General Image Retrieval: Shape, Color, and Texture

The first experiment considers general image retrieval tasks, involving

global descriptors based on shape, color, and texture. The proposed manifold

algorithm was evaluated on three datasets and twelve descriptors. Statisti-

cal paired t-tests were conducted for assessing the impact of the BFS-Tree

algorithm, verifying the statistical significance of the difference between ef-

fectiveness results before and after the algorithm execution.

Table 3 presents the results, considering a fixed neighborhood size (k=20)

and the best parameter setting for each descriptor. As we can observe, the

results obtained by fixed k and the best parameter setting are very similar.

While the effectiveness gains varied from +9.05% to +44.65%, the difference

between the best and fixed k reached at most 1.49% and 0.47% on average.

Such small difference demonstrates the robustness of the method to param-

eter settings. In general, the results indicate that using a fixed value of k

(as 20) for different features and datasets is sufficient for obtaining relevant

effectiveness gains.

The results are briefly analyzed in the following:

• Shape Retrieval: All shape descriptors yielded very significant gains on

MPEG-7 dataset. A remarkable results was obtained for the SS [40] de-

scriptor, which reached a gain of +44.65%, being improved from 37.67% to

54.49%.
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Table 3: BFS-Tree RR for general image retrieval tasks (shape, color, and texture features),

considering the Mean Average Precision (MAP).

Descriptor Dataset Original BFS-Tree BFS-Tree Best Relative Stat.

Score RR RR Param Gain Sig.

(MAP) k=20 Best k Value 99%

Shape Descriptors

SS [40] MPEG-7 37.67% 53.87% 54.49% 35 +44.65% •
BAS [37] MPEG-7 71.52% 84.86% 84.96% 18 +18.79% •
IDSC [39] MPEG-7 81.70% 91.60% 91.68% 18 +12.22% •
CFD [38] MPEG-7 80.71% 94.35% 94.37% 21 +16.92% •
ASC [36] MPEG-7 85.28% 93.56% 93.60% 18 +9.76% •
AIR [35] MPEG-7 89.39% 97.77% 97.84% 40 +14.73% •

Color Descriptors

GCH [34] Soccer 32.24% 35.91% 36.90% 40 +14.45% •
ACC [32] Soccer 37.23% 46.71% 48.20% 40 +29.47% •
BIC [33] Soccer 39.26% 48.62% 49.81% 40 +36.87% •

Texture Descriptors

LBP [43] Brodatz 48.40% 52.36% 52.78% 10 +9.05% •
CCOM [41] Brodatz 57.57% 67.96% 68.09% 16 +18.27% •

LAS [42] Brodatz 75.15% 81.75% 82.19% 13 +9.37% •

• Color Retrieval: Similarly to shape retrieval results, all color descriptors

achieved substantive gains, ranging from +14.45% to +36.87%.

• Texture Retrieval: The texture descriptors yielded effectiveness gains up

to +18.27%. All texture descriptors also reported positive gains.

Notice that the effectiveness gains obtained for all descriptors (shape,

color, and texture) are statistical significant. An experiment was also con-

ducted to evaluate the BFS-Tree algorithm for rank fusion tasks. The results

are presented in Table 4.

The descriptors with the best MAP scores for each dataset was selected,

considering a fixed neighborhood size and the best k value. Observe that

very high effective results are achieved and all combinations outperformed

the respect best descriptor in isolation.
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Table 4: BFS-Tree RR for rank aggregation tasks considering shape, color, and texture.

Descriptor Type Dataset Neighb. Score

Size (k) (MAP)

CFD [38] Shape MPEG-7 - 80.71%

ASC [36] Shape MPEG-7 - 85.28%

AIR [35] Shape MPEG-7 - 89.39%

CFD+ASC Shape MPEG-7 20 98.22%

CFD+ASC Shape MPEG-7 40 98.43%

CFD+AIR Shape MPEG-7 20 99.55%

CFD+AIR Shape MPEG-7 35 99.70%

AIR+ASC Shape MPEG-7 20 99.17%

AIR+ASC Shape MPEG-7 40 99.34%

CFD+ASC+AIR Shape MPEG-7 20 99.87%

CFD+ASC+AIR Shape MPEG-7 40 99.94%

ACC [32] Color Soccer - 37.23%

BIC [33] Color Soccer - 39.26%

BIC+ACC Color Soccer 20 48.89%

BIC+ACC Color Soccer 40 50.13%

CCOM [41] Texture Brodatz - 57.57%

LAS [42] Texture Brodatz - 75.15%

LAS+CCOM Texture Brodatz 20 83.94%

LAS+CCOM Texture Brodatz 40 84.20%

4.4. Natural Image Retrieval

The BFS-Tree algorithm was evaluated on natural image retrieval tasks

considering three well-known datasets: the University of Kentucky Recogni-

tion Benchmark - UKBench [29], the Holidays [24] and Corel5K [28] datasets.

The MAP score is used as effectiveness measure for Holidays and Corel5K.

For the UKBench, the N-S score is used, which is computed between 1 and 4,

according to the number of relevant images among the first four images re-

trieved.
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Tables 5, 6, and 7 present the results obtained for UKBench, Holidays,

and Corel5K datasets, respectively. In spite of the use of a very diversified

set of descriptors, effectiveness gains are obtained in all situations. Even for

Holidays and UKBench datasets, which are very challenging for unsupervised

manifold learning algorithms due to the small number of images per class,

the results are always positive. For Corel5K dataset, high effective results

are obtained, reaching effectiveness gains up to +62.20% for CNN-Caffe.

4.5. Larger Datasets and Hashing Techniques

This section discusses the evaluation of the BFS-Tree algorithm on larger

datasets, considering CIFAR-10 [30] and ALOI [31] datasets, composed, re-

spectively, of 60K and 72K images. For larger datasets, how to obtain the

ranked lists used as input for the BFS-Tree algorithm is also of paramount

importance, once computing the Euclidean distances through brute force

can be unfeasible. Therefore, our experiments considered different hashing

techniques and indexing structures on unsupervised scenarios to obtain the

ranked lists.

The feature extraction considered different CNN features followed by a

dimensionality reduction procedure using PCA1. The redimensioned feature

vectors are used as input by indexing and hashing approaches: Ball-Tree [59]

and Local Sensitive Hashing (LSH) [60]. Additionally, recent deep-based

methods for obtaining the hashing codes were also used: Deep Cauchy Hash-

ing (DCH) [53] and Deep Triplet Quantization (DTQ) [54]. Both hashing

approaches and CNN features are trained only on ImageNet [61] in order to

keep the unsupervised setting. All approaches were used to obtain top-1000

ranking results and the non-deterministic methods considered 3 executions,

1All experiments considered vectors of 100 dimensions.
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Table 5: BFS Tree RR on UKBench [29] dataset.

Descriptor N-S BFS-Tree Relative

Score RR Gain

JCD [47] 2.79 2.97 +6.45%

CEED-SPy [44, 45] 2.81 3.05 +8.54%

FCTH-SPy [44, 46] 2.91 3.15 +8.24%

SCD [48] 3.15 3.34 +6.03%

CNN-Caffe [2] 3.31 3.57 +7.85%

ACC [32] 3.36 3.57 +6.25%

VOC [49] 3.54 3.70 +4.52%

CNN-VGG [57] 3.65 3.81 +4.38%

CNN-OLDFP [58] 3.84 3.93 +2.34%

VOC + ACC + CNN-Caffe - 3.91

CNN-OLDFP + CNN-VGG + VOC - 3.95

Table 6: BFS-Tree RR on the Holidays [24] dataset.

Descriptor Original BFS-Tree Relative

MAP RR Gain

JCD [47] 52.83% 53.37% +1.02%

FCTH-SPy [44, 46] 55.42% 59.61% +7.56%

CEED-SPy [44, 45] 56.09% 59.03% +5.24%

CNN-Caffe [2] 64.09% 69.96% +9,15%

ACC [32] 64.29% 68.80% +7.02%

CNN-OverFeat [3] 82.59% 82.95% +0.44%

CNN-OLDFP [58] 88.46% 88.77% +0.35%

ACC + CNN-OverFeat - 84.37% -

CNN-OLDFP + CNN-OverFeat - 89.97% -

ACC + CNN-OLDFP + CNN-OverFeat - 90.02% -

reporting the results of confidence intervals at 85% of confidence.2

2For the BFS-Tree algorotihm, we used L=100 and k=20 and k=50, respectively, for

the ALOI and CIFAR-10 datasets.
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Table 7: Effectiveness results on Corel5K [28] dataset.

Descriptor Original BFS-Tree Relative

MAP RR Gain

LBP-Spy 16.28% 19.40% +19.16%

FCTH-Spy 27.89% 34.72% +24.49%

JCD-Spy 29.18% 36.92% +26.53%

ACC 27.75% 39.33% +41.73%

ACC-Spy 29.76% 38.86% +30.58%

CEDD-Spy 30.01% 39.07% +30.19%

CNN-Caffe 28.07% 45.53% +62.20%

ACC-Spy+CEED-Spy - 42.25% -

CNN-Caffe+ACC-Spy+CEED-Spy - 53.00% -

Tables 8 and 9 present the results of the BFS-Tree algorithm on the

ALOI [31] and CIFAR-10 [30] datasets. We can observe that positive ef-

fectiveness gains were obtained for all approaches on both datasets. The

BFS-Tree algorithm reached a MAP of 91.15% for RESNET on ALOI [31]

dataset. The higher-effectiveness gains were obtained by the hash-based ap-

proach DCH [53] on the ALOI [31] dataset, reaching +29.99%.

4.6. Visual and Efficiency Analysis

The proposed manifold learning algorithm redefines the similarity rela-

tionships encoded in the whole dataset, with a direct impact on the similarity

space. With the purpose of allowing a clear visualization of such impact, we

constructed a 3-D representation of the dataset before and after the execu-

tion of the BFS-Tree algorithm. Three arbitrary images, called as reference

images, are selected from the MPEG-7 dataset. Other collection images are

positioned in the space according to their dissimilarity to each reference im-

ages, considering each of the axis
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Table 8: Effectiveness results on ALOI [31] dataset.

Feature Indexing/Hashing Original BFS-Tree Relative

MAP RR Gain

NASNET Ball-Tree [59] 64.71% 80.99% +25.16%

VGG16 Ball-Tree [59] 75.94% 88.87% +17.03%

DPN92 Ball-Tree [59] 77.38% 89.75% +15.98%

RESNET Ball-Tree [59] 79.66% 91.15% +14.41%

NASNET LSH [60] 33.07% ± 1.93 36.15% ± 0.0248 +9.29% ± 1.0948

VGG16 LSH [60] 41.31% ± 1.76 43.69% ± 0.0214 +5.73% ± 0.7579

DPN92 LSH [60] 38.05% ± 0.99 40.01% ± 0.0123 +5.14% ± 0.8139

RESNET LSH [60] 41.19% ± 1.03 43.12% ± 0.0137 +4.68% ± 0.6805

DCH [53] 52.85% ± 1.11 68.70% ± 0.0134 +29.99% ± 0.5217

DTQ [54] 39.94% ± 1.80 50.83% ± 0.0169 +27.30% ± 1.6970

Table 9: Effectiveness results on CIFAR-10 [30] dataset.

Feature Indexing/Hashing Original BFS-Tree Relative

MAP RR Gain

NASNET Ball-Tree [59] 50.93% 50.96% +0.06%

DPN92 Ball-Tree [59] 55.56% 55.85% +0.52%

RESNET Ball-Tree [59] 54.76% 56.10% +2.45%

NASNET LSH [60] 24.98% ± 0.0080 25.07% ± 0.0077 +0.35% ± 0.3170

DPN92 LSH [60] 26.87% ± 0.0107 27.46% ± 0.0096 +2.20% ± 0.4943

RESNET LSH [60] 23.91% ± 0.0255 25.13% ± 0.0234 +5.15% ± 1.5019

DCH [53] 7.83% ± 1.03% 8.2% ± 0.0106 +4.65% ± 0.4140

DTQ [54] 8.64% ± 0.78% 9.4% ± 0.0083 +8.72% ± 0.7103

A representation illustrating the similarity space before and after the

algorithm are showed in Figures 8 and 9, respectively. Red circles represent

similar images to the reference images and the remaining images in blue are

illustrated in blue. The selected reference images are illustrated in Figure 10.
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Figure 8: Dissimilarity space before the

BFS-Tree RR algorithm.

Figure 9: Dissimilarity space after the BFS-

Tree algorithm.

Figure 10: Similar reference images considered, respectively for axis x, y, and z. The

similar images are illustrated in red and the other remaining images in blue.

Figure 11: Retrieval results for each of reference images before and after the execution

of the BFS-Tree algorithm. The query images are illustrated within green borders and

non-similar within red borders.
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Figure 12: Dissimilarity space before the

BFS-Tree RR algorithm.

Figure 13: Dissimilarity space after the

BFS-Tree algorithm.

Figure 14: Dissimilar reference images considered for axis x, y, and z. The similar images

to each reference image are represented respectively in colors red, green, and yellow. The

remaining images are illustrated in blue.

Figure 15: Retrieval results for each of reference images before and after the execution

of the BFS-Tree algorithm. The query images are illustrated within green borders and

non-similar within red borders.
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Observe that similar and non-similar images are mixed in the similarity space

in Figure 8, which leads to low-effective retrieval results. After the execution

of the algorithm, the increase of the separability between similar and non-

similar images is remarkable in Figure 9.

The impact observed in the similarity space can also be noticed in the

ranking results. Figure 11 illustrates the retrieval results obtained before and

after the algorithm execution for each of reference images. The effectiveness

gains are remarkable for all reference images.

An analogous representation is also constructed using dissimilar reference

images. Figures 12 and 13 illustrated the 3-D representations before and after

the execution of the algorithm. The reference images are showed in Figure 14.

The respective retrieval results are illustrated in Figure 15.

Figures 11 and 15 illustrate the top-20 results from the MPEG-7 dataset,

which is composed of 70 classes with 20 similar shapes each class. The gains

illustrated in the mentioned images are associated with the Precision mea-

sure, which considers the number of similar images at top retrieval results.

The number of missing similar cases presents a direct impact on the Recall

measure. Results for the MPEG-7 dataset using the Recall metric are dis-

cussed in Section 4.7. Besides that, most of the evaluation conducted in the

paper consider the Mean Average Precision (MAP), which takes into account

both Precision and Recall measures jointly.

The impact of the BFS-Tree algorithm can also be visualized in Figure 16.

The figure illustrates the retrieval results on Corel5K dataset for different

queries (within green borders), before and after the algorithm execution.

Non-similar images are illustrated with red borders. As we can observe, the

retrieval results after the algorithm are significantly more precise.

Regarding efficiency aspects, the runtime for each dataset and a com-
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Figure 16: Retrieval results for query images from Corel5K dataset. The first and second

line for each query illustrate results before and after the execution of the BFS-Tree algo-

rithm. The query images are illustrated within green borders and non-similar within red

borders.

plexity analysis is presented. The experiments were executed on an Intel(R)

Xeon(R) CPU E5-2620 v3 @ 2.40GHz with Linux 4.4.0 - Ubuntu 14.04. Ta-

ble 10 presents the runtime for different datasets, considering the various

steps of the algorithm. The reported times considered an average of 10 ex-

ecutions. The algorithm is currently implemented in a publicly available

framework of unsupervised learning algorithms (UDLF) [62].

An important characteristic consists in the asymptotic complexity of the

proposed algorithm, which is very low. All the analysis can be computed

considering only the top-L positions of ranked lists for trank normalization

and the top-k positions for the BFS-tree analysis. Since the parameters k

and L are constant, the asymptotic complexity is O(1) for each query image

and O(n) for the whole dataset.
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Table 10: Runtime of BFS-Tree on different datasets.

Dataset Rank BFS-Tree Rank Sorting Full Time

Normalization Analysis Diffusion Runtime per query

Soccer 0.0071 s 0.1471 s 0.0828 s 0.0051 s 0.2423 s 0.8654 ms

MPEG-7 0.2451 s 0.5697 s 8.2473 s 0.5265 s 9.5887 s 6.8490 ms

Holidays 0.4850 s 0.0244 s 9.5770 s 0.2954 s 10.3820 s 6.9631 ms

Brodatz 0.4331 s 0.6819 s 15.9960 s 0.7704 s 17.8817 s 10.0685 ms

Corel5K 12.3492 s 2.1720 s 452.8500 s 24.7158 s 492.0870 s 98.4174 ms

UKBench 0.2203 s 0.7998 s 3.0103 s 0.0611 s 4.0917 s 0.4011 ms

ALOI 11.8774 s 128.1810 s 1251.9800 s 8.0586 s 1400.1000 s 19.4458 ms

4.7. Comparison with Other Approaches

The BFS-Tree algorithm is also compared with diverse state-of-the-art

related methods. The comparison considered recently proposed unsuper-

vised learning methods and retrieval approaches on datasets commonly used

as benchmark for image retrieval: MPEG-7 [25], Holidays [24], and UK-

Bench [29].

Table 11 reports the effectiveness results on the MPEG-7 [25]. According

to the dataset protocol, the bull’s eye score (Recall@40), which counts simi-

lar images within the top-40 rank positions, is used as effectiveness measure.

Several state-of-the-art post-processing methods are evaluated on four differ-

ent shape descriptors (IDSC, ASC, CFD, and AIR). As we can observe, the

BFS-Tree algorithm achieved high-effective scores for all features, reaching

the best result for three of them.

Table 12 presents the the MAP scores obtained by the BFS-Tree al-

gorithm on the Holidays [24] dataset, in comparison with state-of-the-art

retrieval methods. Table 13 reports the N-S score obtained on the UK-

Bench [29] dataset in comparison with recent retrieval and unsupervised

post-processing approaches. Notice that very high effective results are re-
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Table 11: Comparison of bull’s eye score on the MPEG-7 [25] dataset.

Shape Descriptors

CFD [38] - 84.43%

IDSC [39] - 85.40%

ASC [36] - 88.39%

AIR [35] - 93.67%

Post-Processing Methods

Algorithm Descriptor(s) Bull’s eye

score

Graph Transduction [63] IDSC [39] 91.00%

Self-Smoothing Operator [1] IDSC [39] 92.77%

Local Constr. Diff. Process [9] IDSC [39] 93.32%

Shortest Path Propagation [12] IDSC [39] 93.35%

SCA [56] IDSC [39] 93.44%

BFS-Tree of Ranking Refs IDSC [39] 93.68%

RDP [64] IDSC [39] 93.78%

Correlation Graph [65] ASC [36] 95.22%

Local Constr. Diff. Process [9] ASC [36] 95.96%

Smooth Neighborhood [66] ASC [36] 95.98%

Reciprocal kNN Graph + CCs [18] ASC [36] 96.04%

BFS-Tree of Ranking Refs ASC [36] 96.18%

Tensor Product Graph [7] ASC [36] 96.47%

Correlation Graph [65] CFD [38] 94.27%

RL-Sim [16] CFD [38] 94.27%

Rank Diffusion [21] CFD [38] 96.19%

Reciprocal kNN Graph + CCs [18] CFD [38] 96.61%

BFS-Tree of Ranking Refs CFD [38] 96.90%

RL-Sim [16] AIR [35] 99.94%

Tensor Product Graph [7] AIR [35] 99.99%

Generic Diffusion Process [10] AIR [35] 100%

Neighbor Set Similarity [14] AIR [35] 100%

BFS-Tree of Ranking Refs AIR [35] 100%

ported on both datasets, outperforming most of considered approaches.
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Table 12: Comparison with state-of-the-art on the Holidays [24] dataset.

MAP scores for recent retrieval methods.

Jégou et al. [24] Tolias et al. [67] Qin et al. [68] Zheng et al. [69]

75.07% 82.20% 84.40% 85.20%

Zheng Pedronette Iscen Li BFS-Tree RR

et al. [70] et al. [18] et al. [71] et al. [72] ACC+CNN-OLDFP

+CNN-OverFeat

85.80% 86.19% 87.50% 89.20% 90.02%

Table 13: Comparison with state-of-the-art on the UKBench [29] dataset.

N-S scores for recent retrieval methods

Zheng Qin Zhang Zheng Bai Xie

et al. [73] et al. [11] et al. [19] et al. [74] et al. [56] et al. [75]

3.57 3.67 3.83 3.84 3.86 3.89

Pedronette Bai Bai BFS-Tree RR BFS-Tree RR

et al. [18] et al. [76] et al. [64] VOC+ACC+ CNN-OLDFP+

CNN-Caffe +CNN-VGG+VOC

3.93 3.93 3.93 3.94 3.95

5. Conclusions

Defining an accurate similarity measure between data is a task of crucial

importance in many areas, specially image retrieval. Beside that, structures

capable of modelling the dataset manifold have been established as relevant

tools for more effective similarity measures. In this paper, a novel unsuper-

vised manifold learning is proposed based on a BFS-Tree structure. The most

relevant conclusion is the potential of exploiting representation strategies to

discovery underlying similarity relationships. The proposed approach uses

a BFS-Tree of Ranking References considering the query image as the root
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of the tree. By representing the top-k neighbors and their respective neigh-

bors in the same data structure, the manifold learning algorithm allows for

reestablishing the similarity relationships and, therefore, improving retrieval

results.

An extensive experimental evaluation was conducted and the proposed

approach achieved very significant effectiveness gains on diverse situations.

A rigorous experimental protocol and comparisons with various state-of-the-

art approaches also demonstrated the effectiveness of the proposed method.

Future work focuses on the investigation of other measures for defining the

BFS-Tree representation. In addition, another promising research direction

consists in developing adaptive strategies for automatically searching an op-

timal value of k. We intend to investigate the use of scores derived from the

BFS-tree structure to identify an adaptive optimal neighborhood size.
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