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Abstract. Contrastive learning has been extensively exploited in self-
supervised and supervised learning due to its effectiveness in learning
representations that distinguish between similar and dissimilar images.
It offers a robust alternative to cross-entropy by yielding more seman-
tically meaningful image embeddings. However, most contrastive losses
rely on pairwise measures to assess the similarity between elements, ig-
noring more general neighborhood information that can be leveraged to
enhance model robustness and generalization. In this paper, we propose
the Contextual Contrastive Loss (CCL) to replace pairwise image com-
parison by introducing a new contextual similarity measure using neigh-
boring elements. The CCL yields a more semantically meaningful image
embedding ensuring better separability of classes in the latent space. Ex-
perimental evaluation on three datasets (Food101, MiniImageNet, and
CIFAR-100) has shown that CCL yields superior results by achieving
up to 10.76% relative gains in classification accuracy, particularly for
fewer training epochs and limited training data. This demonstrates the
potential of our approach, especially in resource-constrained scenarios.

Keywords: Contrastive Learning · Image Classification.

1 Introduction

The advent of advanced technologies for capturing and sharing images has sig-
nificantly expanded the volume of visual data available [25]. As the volume of
data increases, the demand for machine learning approaches capable of leverag-
ing this information becomes indispensable [25]. Machine learning models rely
on loss functions, which are essential as they measure prediction errors and guide
the learning process. For classification, the cross-entropy loss is the most com-
monly used metric for training in supervised learning scenarios [10]. The idea
behind cross-entropy loss is to quantify the difference between probability dis-
tributions. Despite its widespread use, it exhibits limitations, particularly in its
ability to generalize effectively to unseen data. It also struggles with issues like
class imbalance, noisy labels [29,23], and the potential for poor margins [6,13].
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Metric learning and contrastive learning are proposed as solutions to the
limitations of cross-entropy loss by focusing on learning effective feature repre-
sentations that emphasize the relationships and distances between data points,
rather than merely categorizing individual examples [10,3]. Metric learning fo-
cuses on learning a distance function over pairs of objects. This distance function
aims to quantify how similar or dissimilar these objects are to each other. The
primary goal is to ensure that similar objects are closer together while dissimilar
objects are farther apart in the learned metric space [10,3].

One of the most well-known methods for self-supervised contrastive learn-
ing is the Simultaneous Contrastive Learning of Representations [3] (SimCLR),
which is a pioneer in the field. However, since it does not consider labeled data,
the Supervised Contrastive Learning [10] (SupCon) was proposed, which can
be seen as a supervised version of SimCLR. Although significant progress has
been made with contrastive losses, these methods rely solely on comparing the
similarity between pairs of embeddings, ignoring contextual information.

In this research, the concept of contextual information refers to the process of
exploiting the neighboring elements of a data sample to compute more semanti-
cally meaningful similarity measures. Some works exploit neighborhood analysis
for different purposes, showing the relevance of this information in the context of
learning. The Simple Siamese (SimSiam) [4] is compared to SimCLR by employ-
ing a kNN classifier on their latent features. The adaptive neighborhood metric
learning (ANML) [22] identifies and removes inseparable similar and dissimilar
samples in the training procedure. There is also an example of application [24]
that integrates nearest-neighbor to enhance classification performance through
a local-margin triplet loss and local mining strategy. Another approach employs
neighborhood information in graphs to regularize learning [9], but without using
a contrastive loss. However, few methods directly integrate contextual similarity
information into the contrastive loss [30,5,12].

In this work, we propose a novel loss function, the Contextual Contrastive
Loss (CCL), based on the supervised contrastive loss [10,3] and contextual in-
formation, successfully exploited for image retrieval [19,18]. The proposed CCL
improves the learned similarity by taking advantage of contextual neighborhood
information for comparing elements during the training process. Among the
main contributions, we can mention: (i) A novel loss, named Contextual Con-
trastive Loss (CCL), based on the supervised contrastive loss [10,3] and contex-
tual information by [19,18] is proposed; (ii) Different from other methods that
demand constant feature updates, ours only requires updates once per epoch,
utilizing those created during each iteration, causing no significant overhead dur-
ing training; (iii) The neighborhood sets are computed once and do not need to
be recomputed during the training process; (iv) A dynamic neighborhood size is
proposed to initially enforce the regrouping of larger regions in space, and then
progressively focuses on fine-grained regions as the training progresses, which
smooths convergence; (v) Results reveal superior results compared to the orig-
inal contrastive loss [10,3] on image classification datasets, especially in cases
where there are few labeled data and a smaller number of epochs, which shows
the potential of our approach in resource-constrained scenarios.
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The remainder of this paper is organized as follows: Section 2 reviews the
related work about contrastive learning. Section 3 presents the Contextual Con-
trastive Loss (CCL), and the workflow used for training and testing. Section 4
presents the experimental results (a link is added for supplementary ma-
terial containing extensive results, illustrations, and the source code
of our approach). Finally, Section 5 discusses the conclusions and future work.

2 Related Work

Traditional methods, like cross-entropy loss, focus primarily on achieving correct
classifications but may not always encourage the learning of robust, discrimina-
tive features that generalize well to new, unseen data, among other issues (e.g.,
lack of robustness to noisy labels [29,23], possibility of poor margins [6,13]). In
light of this, the contrastive losses, that aim to differentiate between similar
and dissimilar data points, are a promising solution [3,10]. Many recent works
have been using contrastive loss for diverse applications: self-supervised facial
expression recognition [21], blind video restoration [15], self-supervised vision
transformers [16], and many others [8].

The Simultaneous Contrastive Learning of Representations [3] (SimCLR), a
pioneer in the field of self-supervised learning, was proposed for learning visual
representations by maximizing the agreement between differently augmented
views of the same image through a contrastive loss in the latent space. This
method significantly contributed to the field by facilitating the training of more
robust and generalizable features without relying on labeled data. However, Sim-
CLR is not capable of exploiting labeled data because the method is entirely
unsupervised. Considering this issue, the Supervised Contrastive Learning [10]
(SupCon) was proposed to extend the principles of SimCLR by incorporating
labels for more discriminative learning in supervised tasks.

Both SimCLR [3] and SupCon [10] leverage pairwise comparisons for effec-
tive representation learning. However, this strategy may be limited since it does
not consider contextual information [19]. Based on data augmentation, a recent
work [1] proposed to enhance document ranking on small datasets of different
text document types (news, finance, and science) through supervised contrastive
learning. The approach involves augmenting training data by utilizing portions
of relevant documents from query-document pairs. This augmented dataset is
then used with a supervised contrastive learning objective, differing from tradi-
tional pairwise training objectives which did not show improvement with data
augmentation.

There are different means of exploiting contextual similarity information,
among them: employing graph approaches [28,27,14,20,9], data augmentation [1,7],
and using kNN information in parts of the model framework [17,9,24,7]. How-
ever, very few incorporate some type of contextual similarity information in the
contrastive loss. Some examples are the Nearest-Neighbor Contrastive Learning
of Visual Representations [5] (NNCLR), the Contextual Loss [12], and the kNN
Contrastive Loss [30]. The NNCLR [5] is unsupervised and based on SimCLR. It
introduces a loss function that compares an augmentation not with the original
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element, but with the closest neighbor of that element. Besides its contributions,
it strictly uses only a single closest neighbor in the comparison, ignoring other
elements present in the neighborhood. By contrast, the Contextual Loss [12] im-
proves similarity prediction by counting the number of neighbors two samples
have in common.

Despite sharing some similarities with our research, the kNN Contrastive
Loss [30] is also distinctly different: (i): It is designed for classification in dialogue
systems, specifically considering out-of-domain (OOD) samples, as opposed to
image classification; (ii): The kNN Contrastive Loss computes the average con-
trastive loss for an element and its k neighbors. It iterates for the k neighbors
before the contrastive loss logarithmic function. In contrast, our loss formula-
tion is notably different, replacing the similarity function with the square of
three components and featuring symmetry; (iii): The methodologies diverge in
managing neighborhood lists and features. Our method requires only occasional
updates of certain features once per epoch and does not necessitate updating
the neighborhood set throughout the training process.

3 Proposed Approach

3.1 Background

Supervised contrastive loss has been proposed in [10], which is an extension of
the self-supervised [3] batch contrastive approaches to a fully supervised setting,
enabling the model to leverage effectively label information. The general idea
involves grouping data samples that belong to the same class closer together
in the embedding space while pushing apart groups of samples from different
classes. The objective is to enhance the model’s ability to distinguish between
different classes based on the learned representations (features).

The learning process consists of the use of batches, which contain pairs of
images. For each image, two augmentations (i.e., views) are generated. Given a
set of N randomly sampled sample/label pairs, {xk,yk}k=1...N , the correspond-
ing batch used for training consists of 2N pairs, {x̃ℓ, ỹℓ}ℓ=1...2N , where x̃2k and
x̃2k−1 are two random augmentations of xk (k = 1 . . . N) and ỹ2k−1 = ỹ2k = yk.
Here, we consider only multiviewed batches (size 2N), which present two aug-
mentations for each image. Let i ∈ I ≡ {1 . . . 2N} be the index of an arbitrary
augmented sample, and let j(i) be the index of the other augmented sample
originating from the same source sample. The set of indices of all positives in a
batch distinct from i is defined as P (i) ≡ {p ∈ A(i) : ỹp = ỹi}, and |P (i)| is its
cardinality. A(i) refers to the set of all elements in the batch except the image i
called the anchor.

Based on these definitions, the work of [10] proposes an equation for the
supervised contrastive loss (SupCon):

Lsup =
∑
i∈I

Lsup
i =

∑
i∈I

−1

|P (i)|
∑

p∈P (i)

log
exp (zi · zp/σ)∑

a∈A(i) exp (zi · za/σ)
(1)

Here, zi is the embedding generated by the model during the learning pro-
cess for the data sample i. The index i is called the anchor. The similarity of
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embeddings is computed using the dot product operation. The scalar parameter
σ ∈ R+, known as temperature, controls how tightly or loosely the model should
group embeddings of the same class versus those of different classes.

3.2 Contextual Contrastive Loss (CCL)

The proposed contextual loss is based on the supervised contrastive loss [10],
more specifically the one defined by Eq. 1. Among the various factors that sig-
nificantly impact the performance of a loss function, the similarity measurement
is a crucial one. Accurately measuring the similarity between elements helps to
quantify the difference between the predicted values and the actual values.

Contextual Similarity based on Neighborhood Information Pairwise
measures have been widely employed in model training [10]. However, they are
limited since they often ignore contextual similarity information [19]. The con-
cept of “contextual information” is overly used in the literature with different
meanings. In this work, it is used to describe the process of utilizing the closest
neighboring elements of a given item to calculate a more semantically meaningful
similarity metric.

To formalize our approach, let C = {img1, img2, . . . , imgn} be an image
collection. Let zi denote an embedding for the image imgi in a metric space
Rm, where m is the size of the embedding (number of dimensions). Originally,
the similarity between two elements of indexes i and j is computed using the
dot product of their embeddings [10] denoted by zi and zj . This operation is
equivalent to cosine similarity if both embeddings are normalized.

We formulate the contextual similarity between images by first defining sim:
Rm × Rm → R as the cosine similarity sim(zi, zj) between images imgi and
imgj . Based on the comparison between embeddings, an ordered list of nearest
neighbors can be computed for a given anchor imgi ∈ C. The set of the k nearest
neighbors (kNN) of imgi, denoted by NNk(imgi), contains the k most similar
images to imgi in the collection C. Let |NNk(xi)| = k, where | · | denotes the
cardinality of the set. For every xj ∈ NNk(xi) and every xl /∈ NNk(xi), it holds
that d(xi, xj) ≤ d(xi, xl). Additionally, we define NNY

k (imgi) as the subset of
NNk(imgi) where each image belongs to the same class Y as imgi. This subset
can be expressed as: NNY

k (imgi) = {x ∈ NNk(imgi) | class(x) = Y}. This
definition ensures that NNY

k (imgi) exclusively contains images from class Y.
We define the contextual similarity measure as:

simctx (zp, zi, k) =
1

|NNY
k (i)|

×
∑

j∈NNk(i)

sim (zp, zj) , (2)

where zp and zi are the embeddings being compared and k ∈ R+ is a scalar
value that defines the neighborhood size. The function sim is the dot product
operation between the two embeddings, defined by sim(zi, zp) = zi·zp. However,
the result of simctx for the pairs (zp, zi) and (zi, zp) is not symmetric, which is
an important aspect in this scenario. Therefore, to ensure symmetry, we propose
to sum the symmetric pairs, each raised to the power of 2:
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simsym
ctx (zp, zi, k) = simctx (zp, zi, k)

2
+ simctx (zi, zp, k)

2
. (3)

The importance of squaring is further discussed in the next subsections.

Dynamic Neighborhood Size The neighborhood size defined by the scalar
k ∈ Z+, is of fundamental importance in our approach. It defines the number of
elements to be considered by the contextual similarity in Eqs. 2 and 3. However,
the optimal value of k tends to vary throughout the training process. At the
beginning of the training, the model uses larger values of k to contract larger
chunks of data in the embedding space. This manifests in larger adjustments of
the network weights since each image is pushed toward a considerable number
of neighbors. At the end of the training, the model should use smaller neighbor-
hood sizes to ensure smaller adjustments of the model weights and a smoother
convergence thereof.

Let kstart be the initial value of k for the first epoch, ϵ ∈ Z+ be the cur-
rent epoch, and ϵtotal the total number of epochs to run. The value of k is
computed according to a logarithmic decay across epochs, defined as follows:
k = max

(
1, round((1− logϵtotal

(ϵ)) · kstart)
)
, where round is a function that

returns the nearest integer to a given real number.

Proposed Contextual Contrastive Loss (CCL) The length of a vector
(a, b, c) in a 3D space is given by

√
a2 + b2 + c2. In our proposal, we use this

equation to define the contextual contrastive similarity between i and p as fol-

lows: simccl (zi, zp, k) =
√
sim (zi, zp)

2
+ simctx (zi, zp, k)

2
+ simctx (zp, zi, k)

2.
Using all the previous definitions, this can be simplified as:

simccl (zi, zp, k) =

√
sim (zi, zp)

2
+ simsym

ctx (zp, zi, k), (4)

where the result of simccl is the same for symmetric pairs.
With simccl, the complete equation of our proposed contextual contrastive

loss (CCL) is:

Lccl =
∑
i∈I

Lccl
i =

∑
i∈I

−1

|P (i)|
∑

p∈P (i)

log
exp (simccl (zi, zp) /σ)∑

a∈A(i) exp (simccl (zi, za) /σ)
, (5)

where the variable k is omitted for readability proposes.

3.3 Proposed Training Workflow

This section discusses the workflow of the proposed approach and all its steps
from training to testing, including how the proposed CCL is used by the metric
learning model. Figure 1 presents an overview of the four steps that compose our
framework, which is divided into two main categories: (i) metric learning: given
image data, it learns new embedding representations based on the contrastive
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Fig. 1: Workflow of the steps of the proposed approach.

loss; and (ii) classification: where a linear model is trained using the binary
cross-entropy loss to classify the embeddings according to their classes.

The procedures are marked in blue color and the data, that flows (input/output)
between procedures are marked in gray. The steps of the workflow, marked in
blue, are the following:

1) Metric Learning Pretraining: A pretraining is conducted using the
metric learning model and the original supervised contrastive loss. The weights
of this training are later used to generate the neighborhood set and for training
the metric learning model in step (3). For a fair comparison, this step is included
for both the baseline and ours.

2) Compute Neighborhood Sets: The neighborhood sets are computed
based on the features (i.e., embeddings) extracted by the pretrained model. The
neighborhood sets are computed according to the formulation in Section 3.2.
Our approach is efficient since the neighborhood sets are computed only once
and do not need to be recomputed.

3) Train Metric Learning with CCL: The metric learning receives RGB
images as input and learns features in a space with m = 128 dimensions. The
metric learning step uses the proposed CCL for learning more accurate represen-
tations. To calculate the similarity with the nearest neighbors, a set of features
is considered. This feature set is updated each epoch with the features generated
for the batches in every iteration within that epoch. If an image appears more
than once, only the most recent feature from it is used to update the feature set.

4) Classification: A linear classification model is trained using the embed-
dings learned by the metric learning model. This model is used to predict the
labels for the test set. The accuracy is computed and reported on the test set.

4 Experimental Evaluation

In this section, we describe the experimental protocol and present both the quan-
titative and qualitative results obtained. Our proposed CCL loss1 is frequently
compared with SupCon [10], once CCL is based on this approach. Additionally,
we include comparisons with SimCLR [3], which, although unsupervised, was
also compared to SupCon [10] in its original publication [10].

1 Supplementary files and source code: ccl.lucasvalem.com

http://ccl.lucasvalem.com


8 Valem et al.

To conduct our experiments, we considered three datasets: (i) Food101 [2]:
a food categorization dataset with 101 food types, containing 1,000 images each
of different resolutions, totaling 101,000 images; (ii) MiniImageNet [26]: a
subset of the ImageNet dataset originally proposed for few-shot learning, which
contains a balanced set of images across 100 classes, totaling 60,000 images of
varied resolutions; (iii) CIFAR-100 [11]: a traditional dataset of 60,000 32x32
color images in 100 classes, with 600 images per class.

Table 1 presents the default hyperparameters used for the metric learning
model and linear classifier model. Most of them were adopted according to the
Supervised Contrastive Loss (SupCon) implementation. We used the same pa-
rameters for CCL and SupCon loss to ensure a fair and consistent comparison.
The parameters specific to our approach are marked with a star symbol*.

Table 1: Neural network architecture and default hyperparameters used.
Metric Downstream

Parameter Learning Classifier
Architecture ResNet-18 Linear

Classifier
Loss Function Contrastive Cross-

entropy
Batch Size 128 128
Epochs (ϵ) 100 20
Pre-Training Epochs* 10 —
Neighborhood Size (k)* 70 —
Image Resolution Augmented

32x32 Crop
Resized
to 64x64

Metric Downstream
Parameter Learning Classifier
Temperature (σ) 0.1 —
Output Feature Size
(m)

128 —

Learning Rate 0.5 5
Cosine Learning Rate
Decay

True True

Learning Rate Warmup True True
Weight Decay 10−4 0
Momentum 0.9 0.9
Optimizer SGD SGD

Among the parameters, experiments were conducted to evaluate two crucial
ones: the batch size and the neighborhood size (k). These experiments were
performed on the Food101 dataset, which is the largest one, with a random
split of 20% of images for training. Batch size plays a crucial role in contrastive
learning, which hinges on comparing different data samples to learn distinctive
features. A larger batch size provides more diverse sample pairs, enhancing the
model’s ability to generalize and distinguish between features. However, it must
be carefully chosen to balance the quality of the learned representations. Table 2
presents the accuracy for different batch sizes for both SupCon [10] and CCL.
Notably, there is a significant increase in accuracy when the batch size changes
from 64 to 128; beyond this point, the accuracy begins to stabilize. Also, our
CCL presented gains in all cases. These results are plotted in Figure 2, where
the dashed line indicates the default batch chosen (i.e., 128).

Table 3 presents the analysis of the parameter k. It is observed that k = 70 is
the best setting in most cases. However, the variation in results across different k
values is small, suggesting that CCL is robust to different choices of k. Also, for
300 epochs, an even smaller k can be considered. Therefore, we adopted k = 70
for all cases and k = 30 for 300 epochs in the remaining experiments.

With all the parameters and protocol set, an evaluation was conducted with
various training splits (20%, 40%, 60%, and 80%) to assess the robustness of
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Table 2: Impact of batch size
on accuracy (%) for Food101
dataset (20% training split).

Batch Analysis: Acc. (%) on Food101
Batch SupCon CCL Relative
Size [10] (ours) Gain
64 42.07 44.02 +4.635%
128 49.05 53.34 +8.746%
192 51.33 54.66 +6.487%
256 52.41 52.87 +0.878%
Avg. 48.71 51.22 +5.190%

Table 3: Impact of parameter k (neighborhood
size) on accuracy (%). Results in gray deviate
0.20 or less from the best value in bold.

k Analysis: Accuracies (%) on Food101 dataset
Train Epochs SupCon [10] k=30 k=50 k=70 k=90

100 48.32 51.19 53.14 54.10 53.78
20% 200 56.50 58.59 58.96 58.80 58.69

300 58.11 59.86 59.40 58.87 58.44
100 62.47 64.68 65.65 65.86 65.95

40% 200 67.30 68.27 68.66 68.72 68.30
300 68.02 68.95 68.97 68.80 68.59

Average 60.12 61.92 62.46 62.53 62.29

75 100 125 150 175 200 225 250
Batch Size
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48

50

52

54
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cu
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cy

 (%
)

Accuracy (%) for different batch sizes on Food101 dataset
CCL (ours)
SupCon
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Batch
Size

Fig. 2: Accuracy (%) on the test set for
different batch sizes.
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Fig. 3: Test set accuracy (%) across
epochs: SupCon vs. CCL (ours).

CCL for 100 training epochs when compared to SimCLR [3] and SupCon [10].
In our protocol, a percentage of the entire dataset is selected for training, while
the remaining portion is allocated for testing. For each training percentage, three
different splits were randomly generated and used to compare our loss function
to others. Table 4 presents the mean accuracy and a 95% confidence interval
across the three splits for three evaluated datasets. The results reveal gains in
all cases, especially with fewer training data which is a more challenging scenario.

For the Food101 dataset, the most extensive dataset included in our evalu-
ation, we conducted experiments for 100, 200, and 300 epochs. Table 5 shows
improvements across all scenarios. These results reveal a significant benefit of
our method: it achieves superior performance in situations with limited training
data and fewer epochs, which reveals the potential of our method in resource-
constrained scenarios. Additionally, CCL with 200 epochs surpasses SupCon with
300 epochs in all cases. To better illustrate the advantages of CCL compared to
SupCon [10], Figure 3 displays the accuracies on the test set during training.
For 185 epochs, CCL reaches the accuracy that SupCon achieves in 300.

5 Conclusion

In this work, we introduced the Contextual Contrastive Loss (CCL) which lever-
ages the contextual information from neighboring elements to conduct similarity
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Table 4: Accuracies (%) achieved for 100 training epochs, comparing the pro-
posed CCL with other contrastive losses, across four training set sizes on three
datasets. The relative gains compare CCL with SupCon [10].
Dataset Loss Dataset percentages used for (training, testing) Average

(20%, 80%) (40%, 60%) (60%, 40%) (80%, 20%) Values

Food101

SimCLR [3] 31.889 ± 1.974 39.920 ± 0.149 44.246 ± 0.724 47.108 ± 0.937 40.791
SupCon [10] 48.369 ± 0.515 62.346 ± 0.504 68.649 ± 0.300 71.998 ± 0.459 62.841
CCL (ours) 53.573 ± 0.347 65.672 ± 0.368 71.074 ± 1.010 73.920 ± 0.935 66.060
R. Gain +10.759% +5.335% +3.532% +2.670% +5.574%

MiniImageNet

SimCLR [3] 37.909 ± 0.393 48.197 ± 0.244 54.148 ± 1.735 58.427 ± 1.121 49.670
SupCon [10] 53.466 ± 1.133 67.269 ± 0.537 73.429 ± 0.949 77.454 ± 0.793 67.905
CCL (ours) 57.231 ± 1.194 69.263 ± 0.104 74.787 ± 0.645 78.217 ± 0.982 69.875
R. Gain +7.042% +2.964% +1.849% +0.985% +3.210%

CIFAR-100

SimCLR [3] 36.595 ± 2.503 46.018 ± 0.324 51.427 ± 0.426 54.740 ± 1.502 47.195
SupCon [10] 56.133 ± 1.614 68.089 ± 0.758 73.347 ± 0.545 76.383 ± 0.562 68.488
CCL (ours) 58.813 ± 0.116 69.748 ± 0.124 74.753 ± 0.496 77.613 ± 1.283 70.232
R. Gain +4.774% +2.437% +1.917% +1.610% +2.685%

Average Gain +7.525% +3.579% +2.433% +1.755% +3.823%

Table 5: Accuracies (%) achieved on the Food101 dataset when comparing the
proposed CCL against SupCon [10], for different training epochs.

Analysis of the number of epochs on the Food101 dataset
Epochs Loss Dataset percentages used for (training, testing) Average

(20%, 80%) (40%, 60%) (60%, 40%) (80%, 20%) Values

100
SupCon [10] 48.369 ± 0.515 62.346 ± 0.504 68.649 ± 0.300 71.998 ± 0.459 62.841
CCL (ours) 53.573 ± 0.347 65.672 ± 0.368 71.074 ± 1.010 73.920 ± 0.935 66.060
R. Gain +10.759% +5.335% +3.532% +2.670% +5.574%

200
SupCon [10] 56.116 ± 0.836 67.164 ± 0.656 72.102 ± 1.082 74.787 ± 1.418 67.542
CCL (ours) 58.392 ± 0.636 68.657 ± 0.324 73.113 ± 0.709 75.748 ± 0.707 68.978
R. Gain +4.056% +2.223% +1.402% +1.285% +2.242%

300
SupCon [10] 57.981 ± 0.285 68.093 ± 0.345 72.738 ± 1.023 75.498 ± 0.200 68.578
CCL (ours) 59.589 ± 0.626 69.094 ± 0.228 73.253 ± 1.023 75.691 ± 0.806 69.406
R. Gain +2.773% +1.470% +0.708% +0.256% +1.302%

Average Gain +5.863% +3.009% +1.881% +1.404% +3.039%

comparisons between images. The experiments demonstrated that our approach
achieved significantly improved accuracy compared to the traditional loss in
many scenarios, especially in a limited number of labeled data. For future work,
we intend to apply the proposed loss for image retrieval by replacing the down-
stream classification model with a ranking process. We also plan to further ex-
pand the proposed CCL for semi-supervised and self-supervised scenarios.
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