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Abstract. In recent years, the amount of image data has increased ex-
ponentially, driven by advancements in digital technologies. As the vol-
ume of data expands, the efforts required for labeling also escalate, which
is costly and time-consuming. This scenario highlights the critical need
for methods capable of delivering effective results in scenarios with few or
no labels at all. In unsupervised retrieval, the task of Query Performance
Prediction (QPP) is crucial and challenging, as it involves estimating the
effectiveness of a query without labeled data. Besides promising, the QPP
approaches are still largely unexplored for image retrieval. Additionally,
recent approaches require training and do not exploit rank correlation to
model the data. To address this gap, we propose a novel QPP measure
named Accumulated JaccardMax, which considers contextual similarity
information and innovates by exploiting a recent rank correlation mea-
sure to assess the effectiveness of ranked lists. It provides a robust es-
timation by analyzing the ranked lists in different neighborhood depths
and does not require any training or labeled data. Extensive experiments
were conducted across 5 datasets and over 20 different features including
hand-crafted (e.g., color, shape, texture) and deep learning (e.g., Convo-
lutional Networks and Vision Transformers) models. The results reveal
that the proposed unsupervised measure exhibits a high correlation with
the Mean Average Precision (MAP) in most cases, achieving results that
are better or comparable to the baseline approaches in the literature.
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1 Introduction

The widespread adoption of the Internet and digital devices, such as cameras
and smartphones, has dramatically increased the volume of multimedia data
available online. This shift has transformed the population into both consumers
and producers of content. Consequently, the search task has become even more
important, being used as a tool to group and organize the data. In this scenario,
Content-Based Image Retrieval (CBIR) systems [27] are getting attention.

The CBIR systems can rank and retrieve images according to their visual
properties, removing possible ambiguities caused by homonyms in the language.
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This is useful because user intervention is needed to surpass this problem when
performing text-based image retrieval, while CBIR systems are fully automated.
Traditional CBIR systems commonly use shape, color, or texture feature descrip-
tors. However, a decade ago, the emergence of deep learning strategies caused
a shift in the retrieval systems, making the Convolutional Neural Networks and
Vision Transformers the state-of-the-art strategies for feature extraction [6].

Due to the ease of content creation and sharing, a vast amount of data re-
mains unlabeled, emphasizing the critical need for unsupervised learning. To
address this challenge, recent works have been exploiting contextual similarity
information [22] within image datasets to perform various tasks in unsuper-
vised retrieval. These tasks include re-ranking approaches [36,40], and rank-
aggregation [35,41]. By considering the encoded information within the data,
these methods uncover valuable insights without labels.

This work is about Query Performance Prediction (QPP), also referred to in
the literature as effectiveness estimation, query difficulty prediction, and query
difficulty estimation. A QPP task is responsible for estimating the effectiveness of
a ranked list, distinguishing effective queries from poor ones. Initially developed
for traditional text-based information retrieval systems, applying QPP to image
retrieval tasks is still a largely unexplored area [25].

Therefore, recent works are exploring QPP techniques in the domain of image
retrieval [20,26,34,37]. Given the importance of accurately modeling information
in these scenarios, some measures like the Authority [23], Reciprocal Density [21],
and Full-Intersection [26] measures were proposed to perform in a fully unsu-
pervised way. Modeled in a graph-based structure, these measures are grounded
on the cluster hypothesis [12], which considers that images highly ranked in a
ranked list should appear in the ranked lists of each other. Alternatively, recent
self-supervised approaches were proposed, the Deep Rank Noise Estimator [34]
and Regression for Query Performance Prediction Framework [37]. Both strate-
gies use synthetic data for training and incorporate innovative techniques to
exploit the contextual information within an image collection.

This work introduces a novel unsupervised effectiveness estimation measure
for image retrieval tasks, the Accumulated JaccardMax. The main contributions
are as follows: (i) It innovates by exploiting a recent rank correlation measure,
the JaccardMax [33], which is known for its robustness to neighborhood size
and its ability to exploit contextual similarity information at various depths of
ranked lists; (ii) It is fully unsupervised, eliminating the need for training, and is
based on the hypothesis that images with similar ranked lists tend to be similar
too [12]; (iii) It is employed for image retrieval, a largely unexplored area for
most approaches in this category [25]; (iv) Experimental results conducted on
five public datasets have shown that the proposed measure achieved great results
compared to the baselines, outperforming even robust self-supervised strategies.

The remainder of this paper is organized as follows: Section 2 details the
problem formulation, presenting the formal definitions and the main concepts.
Section 3 presents the proposed measure. Section 4 reports and discusses the
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experimental results (a link1 is added for the supplementary material
and the source code of our approach). Section 5 concludes this work.

2 Background

This section presents the concepts used in this work. Section 2.1 presents the
problem formulation, defining the rank and retrieval models. Section 2.2 de-
scribes the unsupervised effectiveness estimation used as baselines.

2.1 Formal Definition

This section conceptually defines the problem. Let C = {img1, img2, . . . , imgn}
be an image collection and n = |C| the collection size. Let D be an image
descriptor of shape, color, texture or a deep learning technique defined by a
tuple D = (ϵ, ρ), where ϵ : imgi → Rd is the function that extracts the image’s
features, and ρ : Rd × Rd → R+ is the function that computes the distance
between the images considering their features.

Let xi be the spatial representation of the image imgi in the Rd space, given
by the d features extracted from the descriptor D. The distance between two im-
ages can be defined as ρ(xi, xj). Euclidean-like distance functions are commonly
used to compute the image’s distance. The distance given by the ρ function is
the original distance between two objects in the image collection. The notation
ρ(i, j) is used along the paper for readability.

The image rankings are represented by ranked lists. A ranked list τq = (img1,
img2, . . . , imgn) is a permutation of the image collection. The rank of an image
imgi in the ranked list τq is defined as τq(i). If τq(i) < τq(j), then ρ(q, i) ≤ ρ(q, j),
meaning that the distance between imgq and imgi is less than the distance
between imgq and imgj . This guarantees the most similar query images are on
the top positions of the ranked lists. Every image in the collection has its own
ranked list. The set of all ranked lists can be defined as T = {τ1, τ2, . . . , τn}.

The neighborhood set that contains the most k similar images to a query
imgq can be defined as N (q, k), where:

N (q, k) = {X ⊆ C, |X | = k ∧ ∀ imgi ∈ X , imgj ∈ C − X : τq(i) < τq(j)}. (1)

2.2 Effectiveness Estimation Approaches

There are two main categories of QPP approaches [25]: pre-retrieval and post-
retrieval. This work focuses on post-retrieval QPP. In contrast to pre-retrieval,
post-retrieval methods predict the quality of the query after the retrieval process
has taken place. In other words, these approaches are responsible for estimating
the effectiveness of a ranked list in a scenario with unlabeled data. This sec-
tion formally defines the four baselines used in this work: two are unsupervised
measures, while the other two are recent self-supervised methods.
1 Supplementary files and source code: accjacmax.lucasvalem.com

http://accjacmax.lucasvalem.com
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1) Authority Score: The Authority Score [23] is a graph-based unsuper-
vised effectiveness estimation measure. Given a query image imgq, each im-
age in N (q, k) is a node. For each imgj ∈ N (q, k) ∧ imgj ∈ N (i, k), where
imgi ∈ N (q, k), an edge is created between imgq and imgi. The Authority Score
counts how many edges were created. In other words, it computes the graph
density. The Authority Score for a query image imgq can be defined as:

As(q, k) =

∑
i∈N(q,k)

∑
j∈N(i,k)

fin(j, q)

k2
, (2)

where fin(j, q) returns 1 if imgj is between the k-nearest neighborhoods of image
imgq and 0 otherwise.

2) Reciprocal Neighborhood Density: The Reciprocal Density score [21]
is based on the number of reciprocal neighbors between two rankings. Formally,
if imgi ∈ N (q, k) ∧ imgq ∈ N (i, k), the score is incremented, which is given by:

nr(q, i) =

∑
j∈N (q,k)

∑
l∈N (i,k) fr(j, l)× wr(q, j)× wr(i, l)

k4
, (3)

where fr(j, l) → {0, 1} returns 1 if imgj ∈ N (q, k) and 0 otherwise; and wr(q, j) =
k+1−τq(j) is the weight function. The higher the weight, the more occurrences
of reciprocal neighborhoods in the top positions of the ranked lists.

3) Deep Rank Noise Estimator (DRNE): The DRNE [34] models ranked
lists as grayscale images. Each ranked list contains a level of noise, associated
with its effectiveness. Following this idea, the more effective a ranked list, the
less noise is associated with it. The method predicts a score for each ranked list
associated with the noise level according to its grayscale image. The noise level
of a ranked list is encoded by a denoising Convolutional Neural Network (CNN),
trained with synthetic data to keep the entire workflow unsupervised.

4) Regression for QPP Framework (RQPPF): The RQPPF [37] also
relies on the use of synthetic data, generating meta-features to train a regression
model from them. These meta-features, which include information on reciprocal
neighborhoods, effectiveness estimation measures, and average ranking positions,
are then computed for the real data. The real data is subsequently used as the
testing dataset for the regression model. In this work, we report the results using
Support Vector Regression (SVR), as it is among the best for this approach.

3 Proposed Method

This section describes the proposed QPP measure named Accumulated Jac-
cardMax. While Subsection 3.1 conceptually defines ranking correlation and the
measure used in this work, Subsection 3.2 presents the proposed measure.

3.1 Rank Correlation and JaccardMax

Ranking correlation measures are responsible for determining the similarity be-
tween two ranked lists. Based on the proposed formal definition, a ranking cor-
relation measure can be defined as a function rc : T × T → R, that computes a
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value between 0 and 1, where 0 means that the ranked lists are totally different,
and 1 meaning that the ranked lists are totally equaled. Ranking correlation
measures commonly evaluate the similarity between two ranked lists considering
the top-k positions, or the set N (imgq, k) for an image imgq with ranked list τq.

The JaccardMax [33] measure considers the highest Jaccard index value ob-
tained until a depth k as the similarity value between two ranked lists. The
main idea of this measure is that a high overlap between two ranked lists, at any
depth, is high evidence of similarity between them. The JaccardMax measure
between two images imgi and imgj , with τi and τj ranked lists, respectively, can
be formally defined as:

JacMax(τi, τj , k) = max
1≤kd≤k

|N (imgi, kd) ∩N (imgj , kd)|
|N (imgi, kd) ∪N (imgj , kd)|

. (4)

3.2 Accumulated JaccardMax

The proposed effectiveness estimation measure, called Accumulated JaccardMax
(Acc. JacMax), departs from other methods by not only assessing the recipro-
cal presence of items in their ranked lists but also incorporating a measure of
similarity between them. Unlike earlier approaches that focused solely on list
reciprocity, the Accumulated JaccardMax measure utilizes the JaccardMax cor-
relation measure to evaluate the ranked list similarity up to a depth of k, as-
signing higher weights to similarities found in top positions. This method aims
to provide a more comprehensive and accurate evaluation of ranked lists by con-
sidering both the similarity information and the position of an image in the
ranked list of the query image. The innovation lies in the premise that substan-
tial overlap between ranked lists indicates image similarity, particularly when
analyzing the top positions. Thus, a high correlation between the query’s ranked
list and the ranked list of a k-nearest neighborhood implies a highly effective
query ranked list, suggesting Accumulated JaccardMax as a promising strategy
for effectiveness estimation in scenarios involving unlabeled data.

The Acc. JacMax score for a query imgq with ranked list τq can be given by:

AccJacMax(q, k, α) =

∑
j∈N (q,k) JacMax(τq, τj , k)× ατq(j)

k
, (5)

where k is the neighborhood size and α is a value in the [0, 1] interval that denotes
the weight of each image in the ranked list τq. The higher the α, the greater the
weight assigned to the top positions. Figure 1 illustrates the computation of the
Accumulated JaccardMax score for an image imgq.

4 Experimental Evaluation

This section presents the experimental evaluation conducted. Section 4.1 de-
scribes the experimental protocol, the image datasets, descriptors, and other
details. Finally, Section 4.2 presents the obtained results.
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Fig. 1: Computation of Accumulated JaccardMax score for the ranked list τq.
The images highlighted in orange represent the nearest neighbors of imgq.

4.1 Experimental Protocol

The experiments were conducted in five different datasets described as follows:
• Soccer [38]: images from 7 different soccer teams, with 40 images per

class, totaling 280 images. Color descriptors are evaluated.
• Flowers [18]: distributed by the University of Oxford, this dataset totals

1360 flower images, divided by 17 classes, 80 images per class.
• MPEG-7 [13]: containing 1400 images, this shape dataset is divided into

70 classes, 20 images per class. Shape descriptors are evaluated.
• Brodatz [2]: composed of 111 different textures, each one is divided into

16 blocks, totaling 1776 images. Texture descriptors are evaluated.
• Corel5k [16]: dataset with various images, like animals, tiles, and stained

glass. Contains 5000 images, distributed into 50 classes, 100 images per class.
The proposed measure and baseline QPP approaches were compared using

the Mean Average Precision (MAP) as the ground truth for evaluating effec-
tiveness. For this evaluation, the MAP was computed using the full ranked list
size. To assess the relationship between these measures and MAP, the Pearson
correlation coefficient was used, as is commonly done in the literature [25,34,37].

The Pearson correlation coefficient admits values in the [−1,+1] interval,
where 1 means a perfect positive linear correlation, and −1 indicates a perfect
negative linear correlation. In this scenario, a high positive correlation between
the MAP and the effectiveness estimation measure indicates a high similarity
between both measures. The higher the correlation between the effectiveness
estimation measure and the MAP, the better the measure to evaluate the effec-
tiveness of a ranked list in an unsupervised scenario.

For all datasets, each image was considered as a query. The descriptors used
for each dataset were selected considering the properties of them. In total, over
20 different descriptors were used, including hand-crafted (e.g., color, shape,
texture) and deep learning (e.g., Convolutional Networks and Vision Transform-
ers) models. All the deep learning feature extractors models were trained on the
ImageNet [4] dataset.

Regarding baselines, the Authority [23] and Reciprocal [21] were executed
considering an implementation publicly available [35]. For DRNE [34] and RQPPF [37],
this work used the results reported in their respective publications due to the
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complexity of these methods and their requirement for training on synthetic
data. To ensure a fair comparison, the same neighborhood value k was main-
tained for each dataset across all approaches. Specifically, k was set to 20 for the
Soccer, MPEG-7, and Brodatz datasets, reflecting their smaller class sizes. For
the Flowers and Corel5k datasets, which feature larger class sizes, k was set to
80. These parameters are also consistent with the ones reported by DRNE [34]
and RQPPF [37]. Additionally, we explored a range of α values for the proposed
Accum. JaccardMax measure, varying from 1.0, where all JaccardMax values are
equally weighted, to 0.90, where higher weights are assigned to the top positions.

4.2 Results

To evaluate our proposed measure against QPP baselines, Table 1 presents
the Pearson correlation between MAP and the QPP approaches across all five
datasets and various descriptors. Since RQPPF has different variations, the re-
sults reported here are the best ones according to its publication [37]. Gray high-
lights the best value per row, and bold highlights the best value of the proposed
measure (Acc. JacMax). The original MAP is reported for reference and the
descriptors are sorted based on it, indicating higher correlation values are typi-
cally found in descriptors with high effectiveness and vice versa. Notice that the
proposed approach achieved the best results in most cases. It also demonstrates
that Acc. JacMax is robust to variations in the parameter α, with α = 0.95 and
α = 0.90 likely being close to the optimal choice in most situations.

The Accumulated JaccardMax score consistently outperformed the baselines
in most descriptors, demonstrating its robust effectiveness predictions. As previ-
ously discussed, the highest correlation values are observed in the highly effective
descriptors, particularly VIT-B16 [5], ResNet [7], and ResNeXt [39]. The pro-
posed measure achieved the best average result in 3 out of the 5 datasets. Even
for the descriptors where it did not achieve the best results, the difference from
the top measure was minimal, ensuring competitiveness in these cases. Also, we
highlight that, according to the results of a Student’s t-test with 95% confidence,
all p-values for the Acc. JaccardMax are below 0.01, providing strong evidence
against the null hypothesis in the statistical test.

The results were organized into bar graphs to facilitate comparison between
our approach and baseline methods. Figure 2 presents the Pearson correlation
between MAP and the QPP approaches for the Brodatz dataset. The red hatched
bar represents the Acc. JacMax, showing the results for the best α value reported
in Table 1. The results were reported for the Regression for Query Performance
Prediction Framework (RQPPF) [37] considering its two variants: “RQPPF + A”
and “RQPPF + R”, which considered Authority and Reciprocal for computing
its meta-features, respectively. The results highlight the superior performance of
the proposed measure, underscoring its effectiveness for texture descriptors.

Aiming to visually compare the correlation of the proposed approach with
MAP concerning baselines, Figure 3 presents a visual analysis of the unsuper-
vised effectiveness measures and the MAP. Each point in the graphs corresponds
to a ranked list. The MAP values of the ranked lists are presented on the x-axis,
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Table 1: Pearson correlation (between MAP and QPP, the higher the better)
for our proposed approach compared to baselines on different datasets. Gray
highlights the best value per row, and bold the best of the proposed measure.

Datasets Descriptors Original Baselines Acc. JacMax (Ours)
MAP Auth. Recip. DRNE RQPPF α = 1 α = 0.99 α = 0.95 α = 0.90

Fl
ow

er
s

VIT-B16 [5] 87.71% 0.9044 0.9354 — — 0.9105 0.9229 0.9409 0.9334
CNN-FBResNet [7] 52.56% 0.7374 0.6715 0.7992 — 0.7997 0.8183 0.8514 0.8460
CNN-ResNeXt [39] 51.91% 0.7657 0.6653 0.7927 — 0.8102 0.8285 0.8646 0.8613
CNN-ResNet [7] 51.83% 0.7298 0.6367 0.7990 — 0.7896 0.8086 0.8420 0.8331
CNN-Xception [3] 47.31% 0.7437 0.6406 0.7696 — 0.7741 0.7945 0.8403 0.8405
CNN-SENet [8] 43.16% 0.5872 0.5720 0.6308 — 0.6261 0.6465 0.6854 0.6708
CNN-InceptRN [30] 42.20% 0.6273 0.5336 0.5504 — 0.6670 0.6773 0.6923 0.6788
CNN-BnVGGNet [17] 41.87% 0.4852 0.3618 0.6313 — 0.5916 0.6270 0.6986 0.7052
CNN-NASNetLg [42] 40.74% 0.6309 0.5510 0.5497 — 0.6572 0.6671 0.6767 0.6582
CNN-VGGNet [17] 39.05% 0.5050 0.3284 0.6385 — 0.6131 0.6516 0.7233 0.7296
Average 49.83% 0.6717 0.5896 0.6846 — 0.7239 0.7442 0.7816 0.7757

Cor
el5

k

VIT-B16 [5] 75.26% 0.8668 0.8438 — — 0.8583 0.8634 0.8584 0.8375
CNN-ResNet [7] 64.86% 0.8497 0.8117 — — 0.8472 0.8518 0.8388 0.8023
CNN-FBResNet [7] 64.25% 0.8546 0.8084 — — 0.8513 0.8560 0.8473 0.8167
CNN-InceptRN [30] 61.31% 0.8055 0.8106 — — 0.7917 0.7925 0.7630 0.7119
CNN-ResNeXt [39] 62.45% 0.8702 0.8255 — — 0.8671 0.8715 0.8596 0.8247
CNN-SENet [8] 57.10% 0.7835 0.8248 — — 0.7840 0.7881 0.7670 0.7203
CNN-Xception [3] 54.60% 0.8784 0.8493 — — 0.8707 0.8737 0.8546 0.8163
CNN-NASNetLg [42] 53.78% 0.8125 0.8444 — — 0.8274 0.8345 0.8199 0.7758
CNN-BnVGGNet [17] 52.82% 0.8206 0.7801 — — 0.8369 0.8461 0.8501 0.8264
CNN-VGGNet [17] 47.99% 0.8071 0.7709 — — 0.8289 0.8387 0.8391 0.8117
Average 59.44% 0.8349 0.8170 — — 0.8364 0.8416 0.8298 0.7944

M
PE

G
-7

AIR [9] 89.39% 0.7639 0.7507 0.8771 0.8482 0.8159 0.8243 0.8501 0.8612
ASC [15] 85.28% 0.7659 0.8143 0.7468 0.8293 0.7987 0.8010 0.8067 0.8038
IDSC [14] 81.70% 0.7783 0.8091 0.7477 0.8243 0.7993 0.8013 0.8063 0.8033
CFD [24] 80.71% 0.7982 0.8362 0.8259 0.8589 0.8146 0.8174 0.8251 0.8245
BAS [1] 71.52% 0.7903 0.8401 0.7970 0.8493 0.8261 0.8287 0.8360 0.8366
SS [32] 37.67% 0.7847 0.8132 0.8403 0.8419 0.8293 0.8333 0.8451 0.8497
Average 74.38% 0.7804 0.8106 0.8058 0.8420 0.8140 0.8177 0.8282 0.8298

Bro
da

tz
LAS [31] 75.15% 0.6473 0.6348 0.6958 0.7056 0.7819 0.7882 0.8092 0.8258
CCOM [11] 57.57% 0.6354 0.6043 0.6563 0.6820 0.7419 0.7481 0.7679 0.7815
LBP [19] 48.40% 0.4961 0.4221 0.4998 0.5214 0.6206 0.6273 0.6491 0.6648
Average 60.37% 0.5929 0.5537 0.6173 0.6363 0.7148 0.7212 0.7421 0.7574

So
cc
er

BIC [28] 39.38% 0.4507 0.3650 — — 0.4532 0.4562 0.4637 0.4615
ACC [10] 37.28% 0.4919 0.4061 — — 0.4928 0.4950 0.4992 0.4938
GCH [29] 32.21% 0.2259 0.1664 — — 0.2131 0.2110 0.2000 0.1820
Average 36.29% 0.3895 0.3125 — — 0.3864 0.3874 0.3876 0.3791

and the effectiveness estimation values give the values on the y-axis. The higher
the correlation, the more linear the behavior tends to be. From the, we can see
that the Acc. JacMax presents a more linear behavior than Reciprocal.

Finally, Figure 4 presents ranked lists to illustrate the prediction of the Accu-
mulated JaccardMax measure compared to the MAP. The examples are shown
for the Corel5k dataset. Query images are highlighted in green, while images
from different classes than the query are highlighted in red. A good query and
a bad query were selected. Notice that the proposed measure exhibits a higher
score for lists with a higher MAP, and vice versa.

5 Conclusion

This work introduced a novel unsupervised effectiveness estimation measure
named Accumulated JaccardMax for image retrieval tasks based on ranking
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correlation. The results revealed that the proposed measure outperformed QPP
approaches in most cases across various descriptors and datasets. Even in cases
where it did not surpass the baseline measures, it remained competitive. For eval-
uation, the MAP measure was used as the ground truth for both the proposed
and baseline measures, serving to assess the correlation between the supervised
and unsupervised measures.

Future work will focus on evaluating the performance of Accumulated Jac-
cardMax in combination with other baseline measures to enhance performance,
assessing its effectiveness in rank fusion and aggregation tasks, and exploring its
impact on additional image retrieval tasks. We also intend to evaluate it in other
domains (e.g., multimedia retrieval such as video and sound).
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