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ABSTRACT
Image and multimedia retrieval has established as a prominent task
in an increasingly digital and visual world. Mainly supported by
decades of development on hand-crafted features and the success of
deep learning techniques, various different feature extraction and
retrieval approaches are currently available. However, the frequent
requirements for large training sets still remain as a fundamental
bottleneck, especially in real-world and large-scale scenarios. In
the scarcity or absence of labeled data, choosing what retrieval
approach to use became a central challenge. A promising strategy
consists in to estimate the effectiveness of ranked lists without re-
quiring any groundtruth data. Most of the existing measures exploit
statistical analysis of the ranked lists and measure the reciprocity
among lists of images in the top positions. This work innovates
by proposing a new and self-supervised method for this task, the
Deep Rank Noise Estimator (DRNE). An algorithm is presented for
generating synthetic ranked list data, which is modeled as images
and provided for training a Convolutional Neural Network that
we propose for effectiveness estimation. The proposed model is
a variant of the DnCNN (Denoiser CNN), which intends to inter-
pret the incorrectness of a ranked list as noise, which is learned
by the network. Our approach was evaluated on 5 public image
datasets and different tasks, including general image retrieval and
person re-ID. We also exploited and evaluated the complementary
between the proposed approach and related rank-based approaches
through fusion strategies. The experimental results showed that
the proposed method is capable of achieving up to 0.88 of Pearson
correlation with MAP measure in general retrieval scenarios and
0.74 in person re-ID scenarios.
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1 INTRODUCTION
The ubiquitous access to image acquisition devices and widespread
facilities on storage and sharing triggered a consistent increase
of image collections and related applications [70]. The task of re-
trieving images according to their visual content addressed by
CBIR (Content-based Image Retrieval) systems [54] is a well stud-
ied problem which still attracts a lot of attention of the scientific
community [70]. Overall, for a query image, the most similar dataset
images are ranked according to their similarity, in decreasing order.
Thus, the retrieval effectiveness depends upon the similarity mea-
surement between images, which ideally should be discriminative
and robust [13]. It is inherently a challenging task, once there can
be many interpretations for a same image and it may depend on
the context of the search.

Originally, the evolution of CBIR systems was mainly supported
by the development of image descriptors [54], defined by a feature
extraction algorithm and a distance function. In order to make the
retrieval robust to geometric and photometric variations, the image
content in terms of the visual properties (color, texture, shape) is
represented through a feature vector [13]. The idea is that a feature
vector extracted for one image can be treated as its “fingerprint”
and can ease up the search process. More formally, each image
can be represented as a point in a high-dimensional space. The
similarity measurement can be performed based on the distance
between the points, computed by a distance function (often defined
by the Euclidean distance).

For approximately a decade, deep learning have emerged and
gave rise to a change of direction in feature representation research,
from hand-engineering to learning-based [45]. The hierarchical
feature representation design given by deep learning models are
effective on learning the abstract features from data which are im-
portant for that dataset and application. In practice, Convolutional
Neural Networks (CNN) features have achieved high-effective re-
sults on retrieval tasks [13]. However, deep learning approaches
often require large amount of labeled data for training or rely on
transfer learning strategies. In this scenario, the availability of label
data for training deep learning models represents an important
bottleneck, especially in real-world and large-scale scenarios.

Ranging between hand-crafted and deep learning approaches, a
myriad of different feature extraction and retrieval approaches have
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been proposed [67, 70]. Therefore, automatically choosing the most
effective to use or fuse in each retrieval scenario became a central
challenge. Many approaches were proposed based on labeled data
and learning models to infer the effectiveness of each visual feature
in order to select and fuse them [45]. Even in supervised scenarios,
to perform an effective selection represents a difficult task. Thus,
how to effectively select the visual features in an unsupervised way,
is even challenger, once there is no information about effectiveness
of individual features [55].

The possibility of estimating the effectiveness of a set of ranked
lists computed by a given visual feature without the use of any
labeled data is a very challenging but also very promising ap-
proach [42, 46]. Most of query performance prediction methods
are based on supervised approaches [39]. Some few approaches ad-
dressed the problem in an unsupervised scenario, as the Authority
Score [43] and Reciprocal Score [40]. Despite of the significant re-
sults, such measures are mainly based on graph-based formulations
of ranking information and do not exploit deep learning models.

In this work, we propose a new method to estimate the effec-
tiveness of ranked lists in a self-supervised fashion, the Deep Rank
Noise Estimator (DRNE). The idea is to predict the quality of results
generated by CBIR systems without labeled data. We propose a
new model architecture based on a well known denoiser, which
has results comparable to the state-of-the-art, the DnCNN [64]
(Denoiser CNN). To keep the entire workflow unsupervised, we
trained the model with synthetic data. In order to create such data,
we emulate the behavior of real visual features with different de-
grees of effectiveness. Based on the generated data, the ranked lists
are converted to images according to a strategy inspired by [44]
and used to train the network, which interprets the incorrectness of
a ranked list as noise. When the same representation is generated
for real visual features, the network is able to estimate the noise
and therefore the rank effectiveness.

To the best of our knowledge, this work is the first method which
deals with the challenging task of unsupervised effectiveness esti-
mation by using a denoising deep learning model. In this way, many
research challenges in the context of this work can be highlighted,
among them: (i) How can we accurately represent the ranked lists
as images? (ii) What is the most efficient and scalable image rep-
resentation? (iii) How to characterize the noise of these images as
the incorrectness of the ranked lists? (iv) How to properly gener-
ate synthetic data in order to train the denoisers in a completely
unsupervised way?

A broad experimental evaluation was conducted, considering 5
public image datasets, various visual features and different tasks, in-
cluding general image retrieval and person re-ID tasks. The results
are evaluated in terms of the correlation between the predicted
effectiveness and the MAP score obtained by the visual feature. In
addition, the complementary between the proposed approach and
related rank-based approaches are exploited through fusion strate-
gies. The results demonstrate that deep denoisers can be applied
in order to predict the effectiveness of ranked lists computed by
different features in distinct retrieval scenarios.

The remaining of the paper is organized as follows: Section 2
presents the related work, discussing the problem formulation and
other effectiveness estimation measures; Section 3 describes the
approach proposed in this paper; Section 4 shows the experimen-
tal protocol and the obtained results; finally, Section 5 states the
conclusions and possible future works.

2 RELATEDWORK
In this section, an overview with the most relevant related works is
presented (Section 2.1) along with the rank model used in this paper
(Section 2.2) and the effectiveness measures (Section 2.3) used as
baselines.

2.1 Overview
Query performance prediction (QPP) [39] is a challenging task
which consists in predicting, mostly post-query, the quality of re-
sults generated by an IR system. Initially proposed in text retrieval
scenarios [9], such approaches also attracted the attention of the
image retrieval research community [26, 39, 42, 46, 61], assuming
a diverse taxonomy as query difficulty prediction [61], query diffi-
culty estimation [26], and effectiveness estimation [42, 46].

This work innovates in comparison with related approaches [26,
39, 42, 46, 61] on modeling noise information to estimate effective-
ness of retrieval results. However, one of the challenges of this work
is how to properly represent the distance matrices or ranked lists,
which are numeric data into a visual image that can be processed
by denoising convolutional neural networks. In the literature, there
are some works which proposed strategies to transform non-image
data into images. In [48], the authors proposed different approaches
for creating images from features vectors, like creating images of
bar graphs and gray images where blacker pixels represent low
distances and whiter pixels represent higher distance values.

There is also the DeepInsight approach [49] which is a very
recent and promising technique. It consists into mapping all the
features into a 2D space using a dimensionality reduction technique
(e.g. t-SNE [33], kPCA). After the distribution is learned, the image
is cropped according to its convex hull (the smallest rectangle where
all the data points fit). The data points are represented according
to the learned distribution and the differences in color are given
according to differences in feature values. This approach can be
used for different classification tasks where the datasets are not
composed by images (e.g. text, audio, signals).

Regarding signal processing, which consists in a unidimensional
data stream, a possible representation for analysing this data is the
use of recurrence matrices [58]. This can be used to create images in
order to analyse recurrent patterns between systems and functions.
This technique provides a wide range of applications.

The proposed approach relies on the idea of noise removal from
images which represent similarity information encoded in ranked
lists, analogous to the approach performed in [44]. However, in
this work, we train a denoising deep learning network, pairing the
ranked list image to its MAP (Mean Average Precision) in order to
obtain a score related to its effectiveness. In this way, we exploit
the denoising network in a query performance prediction task.

Among the most relevant state-of-the-art deep denoisers, we can
cite the DnCNN [64] (Denosing Convolutional Neural Network)
which can learn noise patterns from pairs of clean and noisy images.
The deep denoisers generally have the advantage of being capable of
learning different noise patterns without requiring high execution
times for parameter adjusting or image processing, like in most of
the statistical approaches (e.g. BM3D [11]). There are also more re-
cent approaches, like RDNN [65] (Residual Dense Neural Network)
which was originally proposed for image super-resolution, but can
also be employed for denoising tasks. More recently, there is the
DRUnet [63], a variant of the UNet network employed for denoising.



The cited residual networks, besides more effective, generally tend
to be less efficient regards time and more memory consuming when
compared to DnCNN.

For training denoisers, the lack of clean image data to be used
as groundtruth may be a challenge for certain applications like
medical imaging and remote sensing [22, 35, 47, 50]. In this scenario,
different training strategies were proposed. The Noise2Noise [24]
and Noisier2Noise [35] approaches consist in the idea of training
with pairs of noisy images, where the clean image can be predicted
by learning common patterns in both images which are supposed
to be present in the clean image. There is also the Noise2Void [21]
where the learning process is done with only corrupted or noisy
images, and the noisy pattern is learned considering the given
dataset. There are also other strategies like the one based on Stein’s
unbiased risk estimator (SURE) [50] which proposes a MSE (Mean
Squared Error) unsupervised estimation which can be used during
training. Among the self-supervised strategies, there are some that
implement a CNN with a “blind spot” in the receptive field of the
network [22] and others that generate the groundtruth data using
the most promising statistical methods (e.g. BM3D [11]) in order to
train a network like DnCNN for example [50].

2.2 Problem Formulation
Let C={𝑥1, 𝑥2, . . . , 𝑥𝑁 } be an image collection, where 𝑁 denotes
the collection size. Let us consider a retrieval task where, given a
query image, returns a list of images from the collection C.

Formally, given a query image 𝑥𝑞 , a ranker denoted by 𝑅 𝑗 com-
putes a ranked list 𝜏𝑞=(𝑥1, 𝑥2, . . . , 𝑥𝑘 ) in response to the query. The
ranked list𝜏𝑞 can be defined as a permutation of the𝑘-neighborhood
set N(𝑞), which contains the 𝑘 most similar images to image 𝑥𝑞
in the collection C. The permutation 𝜏𝑞 is a bijection from the set
N(𝑞) onto the set [𝑘] = {1, 2, . . . , 𝑘}. The 𝜏𝑞 (𝑖) notation denotes
the position (or rank) of image 𝑥𝑖 in the ranked list 𝜏𝑞 .

The ranker 𝑅 can be defined based on diverse approaches, in-
cluding feature extraction or learning methods. In this paper, a
feature-based approach is considered, defining 𝑅 as a tuple (𝜖, 𝜌),
where 𝜖 : C → R𝑑 is a function that extracts a feature vector 𝑣𝑥
from an image 𝑥 ∈ C; and 𝑑 : R𝑑 × R𝑑 → R is a distance function
that computes the distance between two images according to their
corresponding feature vectors. Formally, the distance between two
images 𝑥𝑖 , 𝑥 𝑗 is defined by 𝑑(𝜖 (𝑥𝑖 ), 𝜖 (𝑥 𝑗 )). The notation 𝑑 (𝑥𝑖 , 𝑥 𝑗 ) is
used for readability purposes.

A ranked list can be computed by sorting images in a crescent
order of distance. In terms of ranking positions we can say that, if
image 𝑥𝑖 is ranked before image 𝑥 𝑗 in the ranked list of image 𝑥𝑞 ,
that is, 𝜏𝑞 (𝑖) < 𝜏𝑞 ( 𝑗), then 𝑑 (𝑞, 𝑖) ≤ 𝑑 (𝑞, 𝑗). Taking every image in
the collection as a query image 𝑥𝑞 , a set of ranked lists T = {𝜏1, 𝜏2,
. . . , 𝜏𝑛} can be obtained.

2.3 Unsupervised Effectiveness Estimation
Measures

Among the various related works on effectiveness estimation for
image retrieval [26, 39, 42, 46, 61], some are based on supervised
learning [39] or specific representation models [26]. This section
formally defines the measures most similar to our approach, defined
in an unsupervised fashion and independent of retrieval model.

2.3.1 Authority Score. The Authority Measure [43] is used as ef-
fectiveness estimation measure by exploiting a graph representing

the references among images defined in terms of ranked lists. Each
image in top-𝑘 positions of the ranked list 𝜏𝑞 defines a node. For
each image 𝑥 𝑗 in the top-𝑘 of 𝜏𝑞 , the ranked list 𝜏 𝑗 is also analyzed.
If there are images in common in ranked lists 𝜏𝑞 and 𝜏 𝑗 , an edge is
created. The Authority Score is computed based on the number of
created edges. Therefore, the measure is based on the density of
the graph and can be formally defined as follows:

𝜖 (𝜏𝑞, 𝑘) =
∑
𝑢∈N(𝑞,𝑘)

∑
𝑣∈N(𝑢,𝑘) 𝑓𝑖𝑛 (𝑣, 𝑞)
𝑘2

, (1)

where 𝑓𝑖𝑛 (𝑣, 𝑞) returns 1 if 𝜏𝑞 (𝑣) ≤ 𝑘 and 0 otherwise. The value of
𝜖 is defined in the interval [0, 1], achieving the greater score for a
full connected graph at top-𝑘 positions.

2.3.2 Reciprocal Score. The Reciprocal Density Measure [40] is
similar to the Authority, but it considers weights for each reciprocal
neighbor:

𝑅𝑠 (𝜏𝑞, 𝑘) =
∑
𝑖∈N(𝑞,𝑘)

∑
𝑗 ∈N(𝑖,𝑘) 𝑓𝑖𝑛 ( 𝑗, 𝑞) ×𝑤𝑟 (𝑞, 𝑖) ×𝑤𝑟 (𝑖, 𝑗)

𝑘4
.

(2)
The function 𝑓𝑖𝑛 ( 𝑗, 𝑞) → {0, 1} returns 1 if 𝑖𝑚𝑔 𝑗 ∈ N (𝑞, 𝑘). A

weight is defined according to the function𝑤𝑟 (𝑞, 𝑖) = 𝑘 + 1 − 𝜏𝑞 (𝑖).
The higher the weight, more frequent is the occurrence of reciprocal
neighbors in the first positions of the ranked list.

3 DEEP RANK NOISE ESTIMATOR (DRNE)
Our proposed strategy aims at computing effectiveness estimation
measures for ranked lists without requiring any labeled data, in a
self-supervised fashion. We name our method as Deep Rank Noise
Estimator (DRNE). This approach can be summarized into three
main steps:

(1) Computing Synthetic Data: they are used in order to sim-
ulate real scenarios for training the CNN, but without using
any real label or groundtruth;

(2) Ranked Lists as Images: a strategy to represent ranked
lists as images, since they are numerical data, they need to
be converted to images to be provided as input to the CNN.
Our approach for this is step is based on [44];

(3) Effectiveness Estimation CNN: the DnCNN [64] archi-
tecture was modified in order to be used as a effectiveness
estimator for ranked lists, based on their “noise” level present
on the images.

Each of the topics are better detailed and discussed in the fol-
lowing subsections.

3.1 Computing Synthetic Data
In general, training neural networks requires labeled data, which
is not always easily available. With the objective of proposing a
completely unsupervised training, we propose an algorithm to
generate synthetic ranked lists that simulate real scenarios.

Our synthetic scenarios rely on the generation of a confusion
matrix of probabilities. It is a squared 𝐶𝑥𝐶 matrix where 𝐶 is the
number of virtual classes, present in the synthetic scenario. Being
𝑘 the size of each virtual class, 𝐶 = 𝑁 /𝑘 , where 𝑁 is the dataset
size. The matrix is required to be symmetrical with all the values
in the range [0, 1], all the lines and columns are also required to
sum to 1, to keep the consistency with the idea of probabilities. The



position (𝑖, 𝑗) in this matrix corresponds to the probability of the
elements of class 𝑖 being mistaken by elements of class 𝑗 . Following
this reasoning, an element in the diagonal (position (𝑖, 𝑗), where
𝑖 = 𝑗 ) corresponds to the probability of an element being correctly
attributed to its class. From this perspective, imposing restrictions
for the values in the diagonal can increase or decrease the effec-
tiveness of the ranked lists being generated. Figure 1 illustrates
the similarities among classes, where the diagonal elements are
highlighted in blue.

[     ]
...

...

0.72 0.01 0.02 0.08...
0.01 0.61 0.03 0.01

0.02
0.08

...
...

... ... ... ...
0.03
0.01

...

...
0.82 0.01

0.530.01

Figure 1: Illustration of a confusion matrix of probabilities
between classes.

All ranked lists of the dataset share the same matrix for the
generation of its elements. The elements are randomly generated
according to the probabilities presented in the matrix. Since incor-
rect elements tend to be more random than the correct ones, we
also generate a symmetrical similarity matrix to attribute weights
for randomly select the elements that belong to the same class.

3.2 Ranked Lists as Images
The ranked lists consist in numerical data, where each value cor-
responds to the index of the image being ranked. In this work, we
propose a model for transforming a ranked list into image data,
based on what was proposed in [44].

Given a pair of ranked lists 𝜏𝑖 and 𝜏 𝑗 , a grayscale image can be
modelled such that the pixel (𝑝𝑥 , 𝑝𝑦) is defined as the mean of the
positions that the elements occur in both lists:

𝑝𝑖𝑥𝑒𝑙 (𝑝𝑥 , 𝑝𝑦) = (𝜏𝑥 (𝑦) + 𝜏𝑦 (𝑥))/2, (3)

where 𝑝𝑥 = 𝜏𝑖 (𝑥) and 𝑝𝑦 = 𝜏 𝑗 (𝑦).
For the purpose of this work, we always consider images of the

same ranked list to the same ranked list (such that 𝜏𝑖 = 𝜏 𝑗 ), which
produce symmetrical images. The positions with higher similarity
are represented by darker pixels and the ones with lower similarity
by brighter ones. Regarding the size of the images, we considered
200x200 in all the cases. The use of the same size of image for all
the datasets shows the scalability potential of our method.

Figure 2 presents examples of images generated for synthetic
ranked lists with different effectiveness levels. It can be seen that as
the MAP (Mean Average Precision) increases, more blacker pixels
tend to appear in the upper left corner of the image, for example.
However, there are still many other features that can be analysed
in this type of image, since there are multiple images for ranked
lists with the same MAP.

(a) MAP = 0.953625

(b) MAP = 0.198827

Figure 2: Examples of synthetic data generated for different
degrees of effectiveness (𝑘 = 20).

3.3 Effectiveness Estimation CNN
This work proposes a Convolutional Neural Network for estimating
the effectiveness of ranked lists based on their image representa-
tions. The idea is that each ranked list image contains a certain
level of noise, which is related to its effectiveness. Following this
reasoning, the more effective a ranked list is, less noise is associated
to it and vice versa.

Ourmethod consists into apply themodel to extract the noise and
attribute a score which we expect that is related to the ranked list
effectiveness. Figure 3 presents the model proposed and considered
for all the experiments in this work. We modified the DnCNN [64]
model to consider 10 blocks of convolution, batch normalization,
and activation layer. The learned noise is flatten and submitted
to a sequence of dense and dropout layers which should learn a
single float score that represents the effectiveness of the ranked list
provided as input. The MAP of the synthetic data is considered as
the groundtruth during training.

In all the experiments, the NAdam optimizer was used with
learning rate of 10−4 and Mean Squared Error (MSE) loss. The net-
work was trained considering batches of size 2, where both images
correspond to the same image but with different augmentations.
The method is set to have a 50% probability of thresholding the
pixels of the image. If the image is selected to be thresholded, a
random value is picked from 100 to 255 and all the pixels above this



InputLayer
input:

output:

(None, 200, 200, 1)

(None, 200, 200, 1)

Conv2D
input:

output:

(None, 200, 200, 1)

(None, 200, 200, 64)

Activation
input:

output:

(None, 200, 200, 64)

(None, 200, 200, 64)

Conv2D
input:

output:

(None, 200, 200, 64)

(None, 200, 200, 64)

BatchNormalization
input:

output:

(None, 200, 200, 64)

(None, 200, 200, 64)

Activation
input:

output:

(None, 200, 200, 64)

(None, 200, 200, 64)

Conv2D
input:

output:

(None, 200, 200, 64)

(None, 200, 200, 1)

Flatten
input:

output:

(None, 200, 200, 1)

(None, 40000)

Dense
input:

output:

(None, 40000)

(None, 2048)

Dropout
input:

output:

(None, 2048)

(None, 2048)

Dense
input:

output:

(None, 2048)

(None, 1024)

Dropout
input:

output:

(None, 1024)

(None, 1024)

Dense
input:

output:

(None, 1024)

(None, 256)

Dropout
input:

output:

(None, 256)

(None, 256)

Dense
input:

output:

(None, 256)

(None, 1)

Repeat 10 times

Figure 3: Proposed CNN model for effectiveness prediction.

value are set to 255. This is done with the objective of improving
the network generalization during the learning process.

4 EXPERIMENTAL EVALUATION
This section describes the experiments conducted and their results.
We also present comparisons with baselines in different datasets.

4.1 Experimental Settings
The experiments considered 5 different datasets with sizes ranging
from 1,336 to 36,411 images:

• OxfordFlowers-17 [36]: 1,336 images of 17 different species
of flowers (80 images per class);

• MPEG-7 [23]: 1,400 diverse shape images of animals, fruits,
and other objects (20 images per class);

• Brodatz [2]: 1,776 texture images of 111 distinct classes;
• Market1501 [66]: a popular re-ID dataset composed of
32,217 images of 1,501 individuals (750 identities for training
and 751 for testing), 3368 images of the total are considered
as query images;

• DukeMTMC-reID [68]: a re-ID dataset composed of 36,411
images of 1,812 people (702 identities for training, 702 for
testing, and 408 distractors), 2228 images of the total are
considered as query images.

For all the datasets, the Mean Average Precision (MAP) was
considered for evaluating the effectiveness. In all the cases, all
images are considered as query images, except for re-ID datasets,
where only query images specified by the dataset protocol were
considered, as done by most of the authors in the literature. All
re-ID evaluations are of single query type.

The descriptors vary in each case, according to the properties
of each dataset. In total, more than 30 different descriptors are
considered in this work. All the CNN extractions were performed
with models trained on ImageNet [20] dataset 1, except for re-ID
where the models were trained on MSMT17 [59] dataset 2.

Two different trainings were done, both of them considered
artificially generated data for keeping the strategy and analysis
unsupervised. The only required parameter is the size of the virtual
classes (𝑘), which impacts the images generated for training. While
the first training considered 𝑘 = 20, the second used 𝑘 = 80. The
artificial dataset contains 1,400 and 1,360 images for the trainings
with 𝑘 = 20 and 𝑘 = 80, respectively. From the total of synthetic
images, 200 of them were randomly taken for validation and the
remaining was used for training. In both cases, 7 different artificial
descriptors were generated with different levels of effectiveness.
This adjust is done by restricting the intervals in the diagonal of
the confusion matrix: first descriptor uses [0, 0.25], second uses [0,
0.5], third uses [0, 0.75], fourth uses [0, 1], fifth uses [0.25, 1], sixth
uses [0.5, 1], and seventh uses [0.75, 1].

Figure 4 shows the loss values for training and validation data
in both cases along 20 epochs. As can be seen, the losses decrease
as the epochs increase. After 15 epochs, we can see that the model
starts to decrease the train loss much slower than before, but the
validation still varies. For this reason, we considered the train of 15
epochs for prediction in all the experiments to avoid overfit in the
artificial data.

1https://github.com/Cadene/pretrained-models.pytorch
2https://github.com/KaiyangZhou/deep-person-reid

https://github.com/Cadene/pretrained-models.pytorch
https://github.com/KaiyangZhou/deep-person-reid
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(a) Training for 𝑘 = 20.
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Figure 4: Losses along training epochs for train and validation sets.
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Figure 5: Correlation of MAP and effectiveness estimation measures on DukeMTMC dataset.

Our method is compared to both Authority and Reciprocal in all
the cases. To keep the comparison fair, we used 𝑘 = 20 for DRNE
and the baselines in all datasets. The only exception is the Flowers
dataset, where 𝑘 = 80 was used, since it has larger classes than the
others.

4.2 Experimental Results
Table 1 presents the Pearson correlation betweenMAP and the effec-
tiveness estimation measures (Authority Score, Reciprocal Density,
and the proposed approach) for around 30 different descriptors on
Flowers dataset. To keep the comparison fair in this case, 𝑘 = 80
was used for our approach and the baselines. The best results are
highlighted in bold for each line. For the negative correlations (FOH
and SCH), none of the methods were highlighted in bold. The last
line of the table contains the correlation when considering all the
ranked lists of all descriptors together. The original MAP of each
descriptor is also presented with the objective of facilitating the
analysis of the results. Notice that the best results (higher correla-
tions) tend to be more frequent on descriptors of high effectiveness

(which is the case of the CNNs). Consequently, scenarios with de-
scriptors of low effectiveness tend to be more challenging (e.g. FOH,
SCH, GIST). Besides that, the proposed approach (DRNE) achieved
the best results in most of the cases, even in difficult scenarios (e.g.
ACC, EHD, SPLBP). Theses cases of negative correlation occur due
to the low effectiveness of such descriptors and still require more
investigation.

An experiment was conducted in order to evaluate the comple-
mentary among the results provided by each effectiveness estima-
tion measure. Table 2 shows the Pearson correlation between each
pair of measures for the MPEG-7 dataset. Notice that Authority
and Reciprocal are highly correlated, while our proposed approach
is the less correlated with the other two, what indicates that our
approach has a great potential to be combined with the others.

All the remaining datasets, where 𝑘 = 20was used, are presented
in Table 3. Besides the individual results for each measure, combina-
tions of measures are also presented. The combinations were done
by summing the measures, also the abbreviations A, R and D were
used for Authority, Reciprocal and DRNE, respectively. Notice that
in most of the cases the best results correspond to our approach



Table 1: Pearson correlation betweenMAP and effectiveness
estimation measures on Flowers dataset.

Descriptors Original Auth. Recipro. DRNE
MAP (ours)

CNN-FBResNet [15] 52.56% 0.73744 0.67153 0.79920
CNN-ResNeXt [60] 51.91% 0.76568 0.66525 0.79265
CNN-ResNet [15] 51.83% 0.72981 0.63672 0.79903
CNN-DPNet [6] 50.93% 0.77143 0.72479 0.79896
CNN-Xception [7] 47.31% 0.74365 0.64060 0.76958
CNN-BnInception [18] 46.58% 0.57857 0.48638 0.72061
CNN-AlexNet [20] 46.04% 0.46586 0.35353 0.63521
CNN-SENet [16] 43.16% 0.58722 0.57195 0.63076
CNN-InceptionV4 [52] 42.35% 0.67885 0.58592 0.61974
CNN-InceptRN [52] 42.20% 0.62725 0.53364 0.55041
CNN-BnVGGNet [30] 41.87% 0.48524 0.36175 0.63133
CNN-NASNetLg [71] 40.74% 0.63091 0.55103 0.54974
CNN-VGGNet [30] 39.05% 0.50498 0.32844 0.63850
SIFT [31] 28.47% 0.34815 0.31624 0.48026
BIC [51] 25.56% 0.21481 0.16794 0.36447
SPJCD [32, 62] 22.56% 0.27962 0.24767 0.33553
SPCEDD [4, 32] 21.94% 0.31110 0.26055 0.34731
COMO [57] 21.83% 0.10506 0.08213 0.25892
SPFCTH [5, 32] 21.73% 0.19618 0.18878 0.26632
JCD [62] 20.89% 0.15319 0.11306 0.24018
FCTH [5] 20.56% 0.18428 0.13488 0.23862
CEDD [4] 20.48% 0.13077 0.10192 0.20104
SPACC [17, 32] 19.20% 0.07436 0.03312 0.20229
ACC [17] 18.99% 0.03264 0.02153 0.28373
CLD [8] 18.54% 0.32734 0.25345 0.34693
PHOG [12, 32] 14.74% 0.33586 0.33548 0.37418
SCH [8] 13.43% -0.21997 -0.20886 -0.13598
EHD [34] 12.46% 0.03510 0.06457 0.20214
FOH [32, 56] 11.42% -0.06418 -0.06645 -0.03603
SPLBP [32, 37] 10.92% 0.06942 0.07869 0.14425
LBP [37] 10.34% 0.01482 0.02083 0.07323
SCD [8] 10.25% 0.25619 0.10035 0.05702
GIST [38] 9.82% -0.01581 0.02297 0.02691
All Descriptors — 0.39789 0.31277 0.42907

Table 2: Pearson correlation between estimation measures
for all descriptors of MPEG-7 dataset.

Authority Reciprocal DRNE (ours)
Authority 1.0000 0.96928 0.86480
Reciprocal 0.96928 1.0000 0.87641
DRNE (ours) 0.86480 0.87641 1.0000

or a combination that involves our approach. While most of the
datasets consider classes of same size, this does not occur for the
re-ID datasets (Market and Duke). Even with this challenge, the
results are very promising. The combination of the three measures
achieved up to 0.74 of Pearson correlation in the Duke dataset,
which is very significant considering that no labels were used.

Figure 5 presents a graphwhere each dot corresponds to a ranked
list of the DukeMTMC dataset. The dots are plotted according to
the value presented by the effectiveness estimation (that uses no
labels) and the MAP (which uses labels). As can be seen, the results
provided by the combination of the three measures present a more
linear shape, and consequently a higher Pearson correlation as well.

Two visual query examples are presented on Figure 6 with the
DRNE score obtained for each of them. The query image is pre-
sented in green borders and the incorrect results in red borders.
Notice that DRNE attributed a lower score for the ranked list which
presented wrong images and a higher score (very close to 1) for the
one without errors.

Regarding execution time, the prediction time is 9.2909 ± 9.38663
milliseconds considering themean and standard deviation for 44,880
different ranked lists. A training of 9,600 images takes about 25
minutes to run for each epoch on a NVIDIA RTX 2080 GPU. For a
training of 20 epochs, it is required around 8 hours in total.

5 CONCLUSION
This work proposed a variant of the DnCNN network for effec-
tiveness estimation on information retrieval tasks. The model was
trained in a self-supervised fashion considering artificially gen-
erated data and evaluated on 5 different image retrieval datasets,
including generic scenarios and re-ID ones. The measure was com-
pared to two different effectiveness estimation measures commonly
used for ranked list data in the literature (Authority Score and Re-
ciprocal Density). The results revealed that our method provided
competitive results in most of the cases. The best results could be
obtained by combining the three measures.

Among the future works, we intend to investigate different vari-
ations of how to generate artificial data and possible other augmen-
tations to train the network model and improve its generalization.
Besides that, we also intend to investigate strategies to automati-
cally define the parameter 𝑘 .
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