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ABSTRACT

Effectively measuring similarity among data samples repre-
sented as points in high-dimensional spaces remains a major
challenge in retrieval, machine learning, and computer vision.
In these scenarios, unsupervised manifold learning techniques
grounded on rank information have been demonstrated to be
a promising solution. However, various methods rely on rank
correlation measures, which often depend on a proper defini-
tion of neighborhood size. On current approaches, this def-
inition may lead to a reduction in the final desired effective-
ness. In this work, a novel rank correlation measure robust to
such variations is proposed for manifold learning approaches.
The proposed measure is suitable for diverse scenarios and is
validated on a Manifold Learning Algorithm based on Corre-
lation Graph (CG). The experimental evaluation considered 6
datasets on general image retrieval and person Re-ID, achiev-
ing results superior to most state-of-the-art methods.

Index Terms— manifold learning, image retrieval, per-
son Re-ID, correlation graph, rank correlation measures

1. INTRODUCTION
The production of visual content and wide dissemination of
image-based applications is directly associated with techno-
logical advances of the last decades and has led to severe
impacts in many different areas. As a consequence, appli-
cations grounded on image retrieval techniques face increas-
ing challenges, given the diversity in the huge growth of col-
lections [1]. Despite the remarkable advances in supervised
techniques boosted by deep learning strategies, the difficulty
in obtaining large labeled sets required by such approaches
remains a major obstacle. In this direction, unsupervised ap-
proaches based on transfer learning for similarity learning
tasks have been established as a promising solution.

Transfer learning strategies are commonly exploited to
take advantage of training procedures conducted on large
datasets. Convolutional Neural Networks (CNN) [2, 3] and
Vision Transformers (ViT) [4, 5] models have been widely
exploited through transfer learning for obtaining feature rep-
resentations based on its last layers. For retrieval tasks, these
representations are traditionally compared by pairwise dis-
tance functions, i.e., the Euclidean distance. However, such
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deep-based representations often lie on manifolds in a high
dimensional space [6], such that pairwise similarity measures
are insufficient to reveal the intrinsic relationship between
images. In this scenario, diffusion and rank-based manifold
learning approaches have been proposed in order to perform
unsupervised similarity learning tasks, by considering con-
textual information and the structure of the dataset to compute
more effective similarity/dissimilarity measures [7].

Recently, rank-based approaches [7, 8] have achieved
high-effective retrieval results. In fact, rank structures provide
a rich source of contextual similarity information, once the
most relevant information are organized at the top of ranked
lists. The Ranked-List Similarities (RL-Sim) algorithm [1]
exploits rank correlation measures based on the conjecture
that, if two images are similar, their respective ranked lists are
expected to be similar as well. In this research direction, rank
correlation measures and the overlap between the neighbor-
hood sets have been successfully exploited [7, 8] to compute
more effective similarity measures in retrieval tasks.

In this scenario, the relevance of effectively quantifying
the similarities between ranked lists is latent, once many man-
ifold learning methods are based on such correlation mea-
sures. The Rank-Biased Overlap (RBO) [9] measure, based
on a probabilistic user model, uses a key parameter that de-
termines the weight for the top positions in the ranking and
has been widely used. However, most of the measures are de-
pendent on the depth of ranked lists considered or the size of
k-neighborhood set.

In this paper, a novel rank correlation measure is proposed
and validated on an unsupervised manifold learning algorithm
for image retrieval. We propose a measure based on the Jac-
card index, which is capable of identifying maximum similar-
ity indications at different depths of ranked lists. Therefore,
the proposed measure is more robust to the definition of the
size of the neighborhood set, which is essential in unsuper-
vised scenarios and allows to achieve more effective results.
The measure is used on a manifold learning algorithm based
on a Correlation Graph (CG) and Strongly Connected Com-
ponents (SCC) [10].

A wide experimental evaluation was conducted to assess
the effectiveness of the proposed approach. General image re-
trieval and person Re-ID datasets were considered. CNN and
ViT models were considered through transfer learning on un-
supervised scenarios. The results demonstrated that the pro-
posed JacMax measure achieves superior results than RBO
measure in all evaluated scenarios. The proposed approach
was also evaluated on the fusion of features, achieving results
comparable or superior to the state-of-the-art in most datasets.
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2. BACKGROUND AND PROBLEM DEFINITION

This section formally defines the rank model considered (Sec-
tion 2.1) and related rank correlation measures (Section 2.2).

2.1. Rank Model and Unsupervised Manifold Learning

Let C = {o1, o2, . . . , on} be a collection of multimedia ob-
jects (images). Let xi denote a vector representation for the
object oi in a space Rd. Based on the comparison between
representations, a ranked list can be obtained. Let d: Rd ×
Rd → R be a distance function that computes the distance
between two images according to their corresponding repre-
sentations (i.e., Euclidean distance). Formally, the distance
between two images oi, oj is defined by d(xi, xj).

Given a query image oq , a ranked list τq=(o1, o2, . . . , oL)
can be computed in response to the query, where L denotes
the length of the list. The ranked list τq can be defined as
a permutation of a set CL which contains the L most similar
images to image oq in the collection C. The τq(oi) notation
denotes the position (or rank) of image oi in the ranked list τq .
Formally, we can define a ranked list τq such that, if image oi
is ranked before image oj in the ranked list of image oq , that
is, τq(oi) < τq(oj), then d(xq,xi) ≤ d(xq,xj).

Taking every image in the collection as a query image oq ,
a set of ranked lists T = {τ1, τ2, . . . , τn} can be obtained. The
objective of unsupervised manifold learning is to exploit the
rich contextual similarity information encoded in T to define
a more effective similarity measure and, therefore, a more ef-
fective set Tm. Formally, it can be seen as a function fm(·),
such that Tr = fm(T ). The fusion problem is also consid-
ered, where different sets of ranked lists {T1, T2, . . . , Tm} are
taken as input to compute a more effective set Tf .

2.2. Rank Correlation Measures

A rank correlation measure defines a quantitative measure for
assessing the similarity of two ranked lists. Given the broad
use of top-k ranking analysis in retrieval applications, how to
effectively compare such information assumes a fundamental
relevance in many scenarios. Based on the model discussed
in the previous section, a rank correlation measure can be de-
fined as a function r : T × T → R. Once most measures
consider the top positions of ranked lists, a set N (oq) is used
to denote the k-neighborhood set which contains the top-k
elements of the ranked list τq .

• Jaccard: the Jaccard index is a traditional statistic mea-
sure that computes the correlation between two ranked lists
based on the size of the intersection and union of neighbor-
hood sets. The index is formally defined as:

Jaccard(τi, τj , k) =
|N (oi, k) ∩N (oj , k)|
|N (oi, k) ∪N (oj , k)|

. (1)

• RBO: the Rank-Biased Overlap (RBO) [9] also consid-
ers the overlap between top-k lists. However, different from
the Jaccard index, it considers increasing depths through a
weight computed based on probabilities defined at each depth.

The RBO measure is defined as:

RBO(τi, τj , k) = (1−p)

k∑
d=1

pd−1× |N (oi, k) ∩N (oj , k)|
d

,

(2)
where the parameter p is a value in the interval [0, 1] which
denotes the probability of examining the current depth.

3. PROPOSED APPROACH

This section presents the proposed approach. Section 3.1 dis-
cusses the main ideas and relations with competitive mea-
sures. Section 3.2 formally defines the proposed measure.
Section 3.3 discusses its applications to unsupervised mani-
fold ranking.

3.1. Overview and Main Ideas

There is a myriad of rank correlation measures proposed in
the literature [7]. The most effective results on unsupervised
manifold learning for retrieval tasks have been achieved by
measures that consider the size of intersection/overlap at k-
neighborhood sets (i.e., Jaccard). However, a challenging task
consists in defining a proper value of k. Small values can lead
to cuts that are unrepresentative in certain scenarios. Larger
sizes, in turn, may bring in information that is not relevant.

An alternative is given by weighted measures which as-
sign higher weights to overlaps at top positions (i.e., Inter-
section, RBO) [7, 1], or multi-level analysis [11]. In fact,
assigning weights to top positions is a relevant strategy and
improves the robustness of neighborhood size definition, but
faces other difficulties on how to define the weights.

In this work, we propose to solve this challenge by iden-
tifying the depth which presents the maximum Jaccard index
until a depth k. The main conjecture behind this approach is
that a high overlap between ranked lists, at any depth, should
be considered a strong indication of similarity. If it occurs
at top positions, these are the most confident positions. If it
occurs to depths closer to k, it requires a greater overlap.

3.2. Formal Definition

This section presents a formal definition for the proposed rank
correlation measure. The JacMax measure can be defined as:

JacMax(τi, τj , k) = max
1≤kd≤k

|N (oi, kd) ∩N (oj , kd)|
|N (oi, kd) ∪N (oj , kd)|

.

(3)

3.3. Application on Manifold Learning

The proposed rank correlation measure is validated on an un-
supervised manifold learning algorithm for image retrieval.
The manifold learning algorithm [10] is based on a Cor-
relation Graph (CG) and Strongly Connected Components
(SCCs). The correlation measures are exploited to encode
contextual similarity information in the graph, by assigning
weight to edges. The main idea of the algorithm consists in
distinguishing high-effective edges and expanding relation-
ships through these edges.



While the analysis of the graph edges aims to identify reli-
able similarity relationships, the SCCs are used to expand and
identify novel relationships across the graph. Similar images
are expected to be assigned to the same SCCs. In this way,
the algorithm is able to take into account intrinsic inter-class
geometry and can be more effective at measuring distances
between images.

4. EXPERIMENTAL EVALUATION

This section presents the experimental evaluation. While Sec-
tion 4.1 describes the datasets, features, and parameters; Sec-
tion 4.2 shows the quantitative and qualitative results.

4.1. Experimental Protocol

A wide experimental evaluation was conducted, considering
6 different public image datasets, with distinct characteristics
and size ranging from 1,491 to 36,411 images. Four of them
are used for general image retrieval and two of them for per-
son re-identification (Re-ID):
• Corel5k [12]: includes diverse scene content such as fire-
works, bark, microscopy images, tiles, trees, and others. It is
composed of 50 categories with 100 images for each class;
• Dogs [13]: contains images of 120 breeds of dogs from
around the world. It includes 12,000 training images and
8,580 test images, totaling 20,580 images;
• Holidays [14]: a set of personal holidays photos divided
into 500 groups, totalling 1,491 images;
• UkBench [15]: composed of 2,550 objects or scenes. Each
object/scene is captured 4 times from different viewpoints,
distances, and illumination conditions;
• Market1501 [16]: a popular Re-ID dataset composed of
32,217 images of 1,501 individuals, where 3,368 images are
considered as query images;
• DukeMTMC [17]: a Re-ID dataset composed of 36,411
images of 1,812 people, where 2,228 images are considered
as query images.

In total, 6 different feature extractors (descriptors) were
used, encompassing CNNs (ResNet152 [2], ODLFP [18],
OSNet-AIN [3]) and vision transformers (VIT-B16 [4],
SWIN-TF [5], TransReID [19]). The descriptors used on gen-
eral image retrieval datasets (ResNet152, VIT-B16, SWIN-
TF, ODLFP) were trained on ImageNet dataset and the Re-ID
ones (OSNet-AIN, TransReID) were trained on MSMT17
dataset. All of our results use transfer learning and are com-
pletely unsupervised.

Regarding the protocol for effectiveness evaluation, all
images are considered as query images, except for Re-ID,
where only query images specified by the dataset protocol
were considered, as done by most of the authors in the lit-
erature. All Re-ID evaluations are of single query type [20].
The MAP (Mean Average Precision) is used for all datasets.
The Recall@1 (R1) is included since it is commonly used for
person Re-ID. While R1 and MAP range from 0 to 1, the N-S
Score ranges from 1 to 4 and corresponds to the average of
correct images present in the top-4 positions for the UKbench
dataset.

Concerning the parameters, we used L = 1000 for all
general image retrieval datasets and L = 2000 for Re-ID
datasets. The neighborhood size is k = 50 for Corel5k and

Dogs, k = 4 for datasets with very few images per class (Uk-
bench and Holidays), and k = 20 for Re-ID (Market and
Duke). For single feature executions, we used the default
parameters of Correlation Graph: thstart = 0.35, thinc =
0.01, and thend = 1. For rank-aggregation, we considered:
thstart = 0.05, thinc = 0.001, and thend = 1.

4.2. Experimental Results

We conducted an experiment with the objective of comparing
the Correlation Graph with our proposed measure in contrast
to the RBO. Table 1 presents the results for all the datasets
and descriptors. Notice that our proposed measure achieved
the highest MAP value in all cases.

Table 1: Re-ranking results considering MAP (%).

Datasets Descriptors Original
MAP

Correlation
Graph

RBO JacMax
Corel5k ResNet [2] 64.50 85.93 86.15

VIT-B16 [4] 75.02 88.39 89.92
SWIN-TF [5] 73.92 94.11 95.15

Dogs ResNet [2] 63.73 80.93 82.81
VIT-B16 [4] 79.83 86.67 87.48
SWIN-TF [5] 45.54 68.24 69.26

Holidays ResNet [2] 74.88 71.98 75.66
VIT-B16 [4] 82.40 79.71 83.44
SWIN-TF [5] 85.52 82.42 85.21
CNN-ODLFP [18] 88.46 86.24 90.25

Ukbench ResNet [2] 94.54 95.31 97.17
VIT-B16 [4] 93.28 94.25 96.29
SWIN-TF [5] 97.93 98.25 99.01
CNN-ODLFP [18] 97.74 97.81 98.92

Market OSNet-AIN [3] 43.27 42.89 57.39
TransReID [19] 43.52 55.13 55.64

Duke OSNet-AIN [3] 52.66 45.82 68.39
TransReID [19] 55.42 29.39 70.77

An experiment was conducted performing the rank-
aggregation of the best descriptors using our proposed Jac-
cardMax. The results are shown for different effectiveness
measures (NS Score, R1, and MAP) in Table 2. Notice that
combining features provided even higher results than the
previous single descriptor experiment (Table 1).

We used the best results obtained by our approach for
comparing with the state-of-the-art. Table 3 presents a com-
parison for Holidays dataset (MAP), where the value of
91.12% is among the best results. In Table 4 is shown the
comparison for UKBench dataset (N-S Score). The proposed
method surpasses all the results presented with 3.97 which is
very close to 4 (maximum value).

Table 5 shows a comparison with recent baselines for per-
son Re-ID considering MAP (%) and R-01 (%). The methods
are divided into 3 categories: Unsupervised, Domain Adap-
tive, and Cross-Domain. Each result corresponds to the high-
est reported by the authors of the methods. For baselines that
used transfer learning, the reader can consult the correspond-
ing papers to check the datasets used for training. We high-
light that none of the methods were trained using labels of
the target dataset with the objective of keeping the protocol
unsupervised. The results show that our approach obtained
very significant results, superior to most of the baselines for
the Market dataset. For Duke, the method achieved the best
MAP and the second-best R1.



Table 2: Rank-aggregation results for different measures.

Dataset Features NS R1 MAP
Score (%) (%)

Co
re

l5
k

Best Isolated Feature — — 75.02
RESNET + VIT — — 94.96
RESNET + SWIN-TF — — 95.86
VIT + SWIN-TF — — 96.32

Do
gs

Best Isolated Feature — — 79.83
RESNET + SWIN-TF — — 81.18
VIT + SWIN-TF — — 85.44
RESNET + VIT — — 88.24

H
ol

id
ay

s Best Isolated Feature — — 88.46
VIT + SWIN-TF — — 86.02
CNN-OLDFP + SWIN-TF — — 90.31
CNN-OLDFP + SWIN-TF + VIT — — 91.12

UK
be

nc
h Best Isolated Feature 3.85 — 97.93

RESNET + SWIN-TF 3.94 — 99.05
CNN-OLDFP + VIT 3.95 — 99.13
CNN-OLDFP + SWIN-TF 3.97 — 99.55

M
ar

ke
t Best Isolated Feature — 69.57 43.52

OSNET-AIN + OSNET-IBN — 73.25 59.84
OSNET-AIN + OSNET-IBN + TReID — 73.40 60.82
OSNET-AIN + TReID — 75.42 63.53

Du
ke

Best Isolated Feature — 71.81 55.42
OSNET-AIN + OSNET-IBN — 76.21 0.69.27
OSNET-AIN + OSNET-IBN + TReID — 78.77 73.39
OSNET-AIN + TReID — 78.59 73.96

Table 3: State-of-the-art on Holidays dataset (MAP).

MAP for the state-of-the-art methods
Sun Zheng Pedronette Li Liu

et al. [21] et al. [22] et al. [23] et al. [24] et al. [25]
85.50% 85.80% 86.19% 89.20% 90.89%

Yu Gordo Valem Berman Our
et al. [26] et al. [27] et al. [28] et al. [29] Result
91.40% 90.30% 90.51% 91.80% 91.12%

Table 4: State-of-the-art on UKBench dataset (N-S Score).
N-S scores for the state-of-the-art methods

Lv Liu Pedronette Bai Liu
et al. [30] et al. [25] et al. [23] et al. [31] et al. [32]

3.91 3.92 3.93 3.93 3.93

Bai Valem Valem Chen Our
et al. [33] et al. [28] et al. [8] et al. [34] Result

3.94 3.94 3.95 3.96 3.97

With the objective of visualizing the effectiveness of our
approach, some ranked lists are presented where the query
image is shown in green borders and the wrong results in
red borders. For comparing RBO with our proposed mea-
sure, Figure 1 presents an example of a query. Different from
our approach, notice that RBO included many wrong results
among the top positions.

Similarly, we present a visualization for person Re-ID.
Figure 2 presents three ranked lists of a same query ob-
tained for fusion on Market dataset considering OSNET-AIN
+ TransReID. Notice that our approach removed the wrong
images present in the isolated descriptors.

5. CONCLUSION

In this work, we proposed a new correlation measure, the Jac-
cardMax. This metric was evaluated as part of the Correla-
tion Graph (CG) method. A wide experimental evaluation
was conducted on 6 datasets encompassing both general im-

Table 5: Comparison with recent person Re-ID baselines.
Datasets

Method Year Market1501 DukeMTMC
R1 MAP R1 MAP

Unsupervised Methods
EANet [35] 2018 66.4 40.6 45.0 26.4
ECN [36] 2019 75.1 43.0 63.3 40.4
UTAL [37] 2019 69.2 46.2 62.3 44.6
CAP [38] 2021 91.4 79.2 81.1 67.3

Domain Adaptive Methods
HHL [39] 2018 62.2 31.4 46.9 27.2
CSGLP [40] 2019 63.7 33.9 56.1 36.0
ECN++ [41] 2020 84.1 63.8 74.0 54.4
MMCL [42] 2020 84.4 60.4 72.4 51.4
Cross-Domain Methods (single-source* and multi-source**)
*EANet [35] 2018 61.7 32.9 51.4 31.7
*AF3 [43] 2019 67.2 36.3 56.8 37.4
*AF3 [43] 2019 68.0 37.7 66.3 46.2
*PAUL [44] 2019 68.5 40.1 72.0 53.2
**EMTL [45] 2018 52.8 25.1 39.7 22.3
**Baseline by [20] 2019 80.5 56.8 67.4 46.9

Our Proposed Approach
Our Result 75.42 63.53 78.59 73.96

Rank-biased Overlap (RBO)

Our proposed correlation measure

Fig. 1: Query on Holidays with results for RBO and JacMax.

OSNET-AIN

TransReID

Fusion (ours)

Fig. 2: Visual example of fusion result on Market dataset.

age retrieval and person Re-ID. Several descriptors were used
covering both recent CNNs and vision transformers. The ex-
periments revealed that the proposed measure is not only ca-
pable of obtaining results superior to the ones considering the
default measure (RBO), but also comparable or superior to
most baselines. Among future works, we intend to investigate
the measure as part of other re-ranking and feature selection
methods.
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[11] N. G. De Sá, L. P. Valem, and D. C. G. Pedronette, “A multi-level rank
correlation measure for image retrieval.” in VISIGRAPP (5: VISAPP),
2021, pp. 370–378.

[12] G.-H. Liu and J.-Y. Yang, “Content-based image retrieval using color
difference histogram,” Pattern Recognition, vol. 46, no. 1, pp. 188 –
198, 2013.

[13] A. Khosla, N. Jayadevaprakash, B. Yao, and L. Fei-Fei, “Novel dataset
for fine-grained image categorization,” in Workshop on Fine-Grained
Visual Categorization, CVPR, June 2011.

[14] H. Jegou, M. Douze, and C. Schmid, “Hamming embedding and weak
geometric consistency for large scale image search,” in ECCV, ser.
ECCV ’08, 2008, pp. 304–317.

[15] D. Nistér and H. Stewénius, “Scalable recognition with a vocabulary
tree,” in CVPR, vol. 2, 2006, pp. 2161–2168.

[16] L. Zheng, L. Shen, L. Tian, S. Wang, J. Wang, and Q. Tian, “Scal-
able person re-identification: A benchmark,” in ICCV, 2015, pp. 1116–
1124.

[17] Z. Zheng, L. Zheng, and Y. Yang, “Unlabeled samples generated by gan
improve the person re-identification baseline in vitro,” in ICCV, 2017,
p. 3754–3762.

[18] K. Reddy Mopuri and R. Venkatesh Babu, “Object level deep feature
pooling for compact image representation,” in CVPR, June 2015.

[19] S. He, H. Luo, P. Wang, F. Wang, H. Li, and W. Jiang, “Transreid:
Transformer-based object re-identification,” in ICCV, October 2021,
pp. 15 013–15 022.

[20] D. Kumar, P. Siva, P. Marchwica, and A. Wong, “Fairest of them all:
Establishing a strong baseline for cross-domain person reid,” CoRR,
vol. abs/1907.12016, 2019.

[21] S. Sun, Y. Li, W. Zhou, Q. Tian, and H. Li, “Local residual similarity
for image re-ranking,” Information Sciences, vol. 417, no. Sup. C, pp.
143 – 153, 2017.

[22] L. Zheng, S. Wang, Z. Liu, and Q. Tian, “Packing and padding: Cou-
pled multi-index for accurate image retrieval,” in CVPR, June 2014, pp.
1947–1954.

[23] D. C. G. Pedronette, F. M. F. Gonçalves, and I. R. Guilherme, “Un-
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