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Resumo
O crescimento exponencial das coleções de imagens produziu um aumento significativo
nas aplicações de aprendizado de máquina e recuperação de imagens em diversos cenários.
Apesar dos avanços recentes, muitos métodos ainda dependem fortemente de grandes
volumes de dados rotulados para treinamento, o que representa um obstáculo importante,
uma vez que produzir dados rotulados é geralmente custoso. Para enfrentar esse desafio,
várias técnicas foram desenvolvidas. Um aspecto crítico de tais abordagens é definir a
similaridade entre imagens de maneira eficaz, o que continua sendo um desafio central em
aplicações de recuperação e aprendizado de máquina, tais como classificação. A questão
central está intrinsecamente relacionada à forma como a informação é representada e
aos métodos usados para comparar essas representações. Uma grande limitação é que a
maioria ainda depende de medidas par-a-par e ignoram outras informações significativas
presentes na vizinhança que podem ser usadas para melhorar os resultados. Este trabalho
foca em melhorar a eficácia da recuperação de imagens por conteúdo visual e tarefas de
classificação usando similaridade contextual, indo além das métricas tradicionais par-a-par
para explorar as relações entre os elementos. O aprendizado de similaridade contextual é
empregado para explorar relações de vizinhança entre os elementos, usando técnicas tais
como informações baseadas em ranqueamento, medidas contextuais, grafos e hipergrafos
para modelar a informação contextual de forma eficaz. Esta tese propõe sete métodos novos
aplicados a cenários de propósito geral e re-identificação de pessoas (Re-ID) abordando
diferentes contribuições. Três tarefas principais foram consideradas: estimativa de eficácia
de consultas, recuperação e classificação de imagens. Foi realizada uma ampla avaliação
experimental, totalizando 17 coleções de imagens e mais de 50 descritores visuais. Os
métodos propostos, quando comparados com o estado-da-arte, demonstram resultados que
são comparáveis ou superiores aos das abordagens existentes na maioria dos casos.

Palavras-chave: Similaridade Contextual; Recuperação de Imagens; Classificação
de Imagens; Estimativas de Eficácia; Re-identificação de Pessoas; Aprendizado de
Representações.



Abstract
The exponential growth of image collections has demanded a significant increase in the
use of machine learning and image retrieval applications across various scenarios. Despite
the relevant advances, many methods still rely heavily on large volumes of labeled data for
training, which establishes an important obstacle, once producing labeled data is generally
expensive and time-consuming. To address this challenge, numerous techniques have been
developed recently. A critical aspect of these approaches is effectively defining image
similarity, which remains a central challenge in retrieval and machine learning applications,
such as classification. The core of this issue is intrinsically linked to how information is
represented and the methods used to compare these representations. A major limitation is
that most of them still rely on pairwise measures, ignoring other meaningful information
present in the neighborhood that can be used to further increase the results. This work
focuses on improving the effectiveness of image retrieval by visual content and classification
tasks using contextual similarity, moving beyond traditional pairwise measures to exploit
relationships among elements. Contextual similarity learning is employed to capture
underlying relationships among elements, using techniques such as rank-based models,
contextual measures, graphs, and hypergraphs to model contextual information effectively.
This dissertation proposes seven novel methods applied across general-purpose and person
re-identification (Re-ID) scenarios addressing different contributions. Three main tasks
were considered: query performance prediction, image retrieval, and image classification.
A wide experimental evaluation was conducted, totaling 17 datasets and more than 50
visual image descriptors. The proposed methods, when compared with state-of-the-art and
recent baselines, demonstrate results that are comparable to or surpass those of existing
approaches in most cases.

Keywords: Contextual Similarity Information; Image Retrieval; Image Classification;
Query Performance Prediction; Person Re-ID; Representation Learning.
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1 Introduction

Effectively defining the similarity between images is a central challenge in retrieval
and machine learning applications. This issue is deeply connected to: (i): how information
is represented; and (ii): the measures used to compare these representations [321, 294,
371, 250]. This work presents contributions in both directions, proposing seven novel
approaches.

This dissertation discusses and presents contributions aimed at improving the
effectiveness of image retrieval by visual content and classification tasks using contextual
similarity learning. This introductory chapter outlines an overview of this work and is
organized as follows: Section 1.1 discusses the motivations of the conducted research.
Section 1.2 presents the challenges and research questions addressed. Section 1.3 states
the main hypothesis validated in this dissertation. Section 1.4 discusses the objectives and
contributions of the study. Section 1.5 describes the overall structure of this document,
including a summary of each chapter’s content and an illustration of how concepts and
terms relate to the contributions.

1.1 Motivation
In recent years, there has been an exponential increase in the volume of image data,

primarily due to advancements in technologies for generating, storing, and sharing visual
information [320, 80]. Additionally, there are numerous applications (e.g., surveillance
cameras [390, 137, 426], medical imaging [341, 6, 1], remote sensing systems [160], social
media [140]) that generate vast amounts of visual data.

In this scenario, image retrieval and machine learning tasks such as image
classification are increasingly being utilized in many applications [255]. Remarkable
progress has been made in these methods, particularly due to the consistent evolution
of deep learning [109, 31]. However, the majority of them are supervised and depend on
large volumes of labeled data for training. In contrast, the production of labeled data
is challenging since it is often expensive and time-consuming to obtain [91]. It may also
require a specialist for labeling, especially according to the specificity of the domain.
Aiming at filling this gap, many unsupervised, semi-supervised, and even self-supervised
approaches have been proposed to deal with such a challenge [107]. In most of these
methods, effectively modeling data is crucial for exploiting the information available in
the unlabeled data.

For most approaches, the essence of learning hinges on the ability to model data
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accurately, which involves different concepts, in particular, representation approaches
and distance or similarity measures [321]. This is especially important for Content-Based
Image Retrieval (CBIR) systems, which retrieve images based on visual content rather
than metadata [316]. These systems usually employ feature extraction and representation
methods, which have evolved considerably [294]. Such methods have transitioned from
traditional hand-crafted features [254] to more advanced deep learning approaches [294,
438], including Vision Transformers [77, 202]. However, most comparison tasks still rely on
pairwise measures [294, 80], which do not exploit contextual information [245]. In general,
the term context can be broadly understood as all the relevant information pertinent to
an application and its users. This work considers the idea of contextual similarity that
consists of exploiting the relationships beyond pairwise analysis, involving other elements,
such as the neighborhood or more related additional information [246, 245]. The term
contextual similarity learning is used for the learning process that employs contextual
similarity for more effectively capturing the underlying relationships among elements.

An essential aspect is that contextual similarity information can be modeled in many
different forms, using different representations and structures [235, 416], among them: (i)
graphs [86, 366]: they can be used for exploiting the relationships between neighbors, which
is a key aspect for understanding the local context and influence among interconnected
entities; (ii) ranked lists [246, 245]: in image retrieval, each ranked list contains the most
similar elements for a given query. The similarities between elements can be redefined
according to the analysis of the neighborhoods available in these lists. The position of each
element in each list also contains valuable information; (iii) clustering [404, 373]: identify
and group data points that are similar according to predefined criteria. These groups allow
the discovery of inherent patterns or relationships that may not be apparent upon initial
observation.

Besides these approaches, there is still a wide range of methodologies that can
be proposed to exploit contextual information in numerous scenarios. Similarity learning
applied to retrieval is generally explored by re-ranking tasks. Despite the crescent popularity
of these methods, more robust structures have not yet been extensively employed in most
cases. Structures that represent higher-order similarities, such as relationships among
neighbors of neighbors, can be particularly advantageous. Hypergraphs, for example, allow
edges to connect multiple vertices, offering a sophisticated technique for capturing these
relationships [403, 251]. Additionally, most unsupervised re-ranking approaches [18, 282,
108] provide a new ranked list representation as output, but new features are not produced
in return, which could be used to encode contextual information for classifiers, for example.

Another application that could deeply take advantage of the enrichment of
contextual information is feature selection and fusion [260, 389, 424, 329, 327]. Among
different strategies, the selection of features can be done through effectiveness estimation
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and correlation measures [329]. They consider the idea that fusion benefits from elements
with high effectiveness and that are also complementary. The creation and usage of
contextual structures for estimating the effectiveness and measuring correlations is still an
area that requires further research.

This work exploits contextual similarity learning for general-purpose image retrieval
and person re-identification, usually abbreviated as person Re-ID. Person Re-ID is a type
of surveillance application that has been gaining a lot of attention and nowadays is
of fundamental importance in many camera surveillance systems. The task consists of
identifying individuals across multiple cameras that have no overlapping views [137].
A Re-ID system broadly consists of three main steps [426]: person detection, feature
extraction, and person retrieval or matching. This work focuses on the final step, which
can be viewed as a specific image retrieval application [137].

Person Re-ID is a complex task that presents numerous difficulties [390, 137, 426],
including (i) varying angles of view between cameras, (ii) low-resolution images, (iii)
changes in lighting conditions, (iv) occlusions blocking part of the view, (v) the difficulty of
manually labeling images for use in training algorithms, (vi) unbalanced classes or classes
with very few elements, (vii) the complexity of modeling data, and (viii) the extensive
volume of data that needs to be processed.

Amid these challenges in Re-ID, many approaches introduced more robust deep
learning models [390], such as Vision Transformers [111, 163, 221], metric learning [185,
156, 185, 396], and Siamese networks [340, 339]. Other strategies include dataset expansion
with augmentations [132, 291] or artificial data considering appearance attributes, body
parts, temporal information, and different types of multimodal information. Additionally,
metric learning is often employed for Re-ID due to its capacity to be effective when dealing
with unseen data [185] since it focuses on learning distances or similarities rather than
specific features of the training data. This approach allows the model to generalize better
to new examples that were not present in the training set.

Apart from all these advancements, post-processing methods that exploit contextual
information have gained significant attention due to their ability to improve results provided
by latent features of different deep learning models. Various unsupervised post-processing
strategies are based on the idea of exploiting the information of reciprocal neighborhoods
and measuring the co-occurrence of elements in ranked lists [429, 174, 225, 165, 211,
96, 388, 95, 108], demonstrating substantial improvements. Although these approaches
are becoming increasingly common in Re-ID, methods for selection and fusion remain
relatively scarce. This scenario highlights the importance of investigating methods capable
of effectively exploiting contextual information.

In addition to retrieval, it is also imperative to address scenarios with limited
labeled data for classification [135]. Graph convolutional networks (GCNs) offer a promising
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solution for semi-supervised classification by learning from both labeled and unlabeled data
considering graph structures [412]. Moreover, GCNs can learn node and graph embeddings
that capture complex dependencies and structural relationships [141]. However, GCNs
are not widely used for image classification since graphs are typically not available in
image domains [274, 343, 307]. Therefore, effectively modeling these graphs, which can be
utilized to exploit contextual information, is a crucial topic for research.

Another approach that has recently demonstrated continuous advances for
improving classification results is the use of contrastive learning [143, 47]. Unlike the
commonly used cross-entropy loss, which aims to minimize the difference between the
predicted and true class probabilities, contrastive loss focuses on learning similarities
and dissimilarities between data points rather than merely categorizing them [47].
Despite this, most contrastive losses consider only pairwise measures [143, 47, 49, 47],
with only a few incorporating some type of neighborhood information [441, 82, 183].
Moreover, these approaches often require huge volumes of data for training (i.e., labeled or
unlabeled) [47, 49], even in self-supervised scenarios, which is a challenge in circumstances
where data is scarce.

In light of the presented discussion and all challenges, the focus of this dissertation
is to exploit the use of contextual similarity information with the objective of improving
the effectiveness of image retrieval and classification, particularly in cases where labeled
data is limited or non-existent. This dissertation primarily concentrates on unsupervised
learning, while also proposing semi-supervised and supervised approaches.

1.2 Research Challenges
Contextual similarity information can be applied in a variety of fields. However,

appropriately representing and exploiting contextual information in each scenario poses
significant difficulties. There are many research challenges related to various applications
that can be used to improve the effectiveness of image retrieval and classification tasks.
In the following, several topics are discussed and corresponding research questions are
presented for each:

• Selection and fusion in person Re-ID: The selection and fusion involves choosing
the most relevant features from the data and combining them to enhance the retrieval
effectiveness [260]. There are various feature extractors and possible combinations
between them. Selecting the right features is crucial because manually evaluating
all combinations becomes impractical as the number of features increases linearly
and the number of combinations increases exponentially. The concept is based on
the idea that fusion is most effective when it involves elements that are both highly
efficient and complementary. For person Re-ID, the complexity of accurately matching
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individuals across different camera views becomes significantly more challenging
in unsupervised applications due to the absence of labeled data [137]. Effectively
modeling and exploiting patterns in the data is crucial in this scenario.
Research question:

– How can contextual similarity information be used for selection and fusion in
unsupervised person Re-ID?

• Query performance prediction: Also known as effectiveness estimation, query
performance prediction (QPP) encompasses techniques for assessing the quality of
ranked lists in scenarios where no labels are provided. In this context, the ability
to assess the effectiveness of the retrieval process provides a significant advantage
for different tasks, including enabling the selection of more effective ranked lists.
However, QPP is very challenging, especially in unsupervised tasks. One of the
main difficulties is elaborating an approach that effectively generalizes across diverse
scenarios [262]. Bridging this gap represents a major challenge that can be mitigated
by incorporating contextual similarity information.
Research question:

– How can data be modeled using contextual similarity information for query
performance prediction?

• Synthetic data: Recently, self-supervised approaches have been proposed to address
scenarios where labeled data is scarce. Among the different means of self-supervision,
one of them is by using synthetic data. There are many advantages and benefits
of using synthetic data, primarily due to its flexibility and control in generating
large volumes of annotated data. In domains where safety and privacy are relevant,
using real data can raise privacy concerns and legal issues. Synthetic data does not
carry these risks. However, creating representative synthetic data presents many
difficulties. One of the primary challenges is to accurately reflect the complexity
and variability of real-world data [72]. The generated synthetic data is expected to
encompass a wide range of scenarios, including rare events and edge cases, to ensure
comprehensive learning.
Research questions:

– How can contextual similarity information be used to generate synthetic data?

– How can contextual similarity learning be employed on synthetically generated
data?

• Unsupervised similarity learning methods: Despite the potential of
unsupervised similarity learning methods to improve retrieval results, effectively
representing and encoding the maximum amount of contextual information remains
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a challenge. This difficulty is amplified because these methods operate without
labels and cannot utilize relevance feedback [312] as supervised algorithms do.
These methods usually exploit the relationships among images through ranked
lists and similarity among elements [95, 108, 250]. The primary challenge lies in
modeling and leveraging this similarity information, which can be approached through
various strategies such as graph structures [381], contextual measures [128], and
more [382, 384]. Utilizing more complex structures to represent second-order similarity
(i.e., relationships such as neighbors of neighbors) can be particularly relevant, for
example.
Research question:

– How can more complex structures, which encode contextual information more
effectively, be applied to unsupervised similarity learning?

• Representation learning and embeddings: Feature learning is of fundamental
importance in many retrieval and classification applications [321]. However, the
capacity to encode information of an image in an embedding is very challenging.
When converting an image into an embedding, some information is inevitably lost.
This loss must be minimized to ensure that the most critical features of the image
are retained. There is also the semantic gap [24, 115] between the raw pixel data
of an image and the human interpretation of the image’s content. Unsupervised
similarity learning approaches usually post-process ranked lists to enhance image
retrieval results but do not provide any form of embeddings that can be used for
other tasks, such as classification.
Research question:

– How can contextual information from similarity learning approaches be encoded
to generate embeddings that are useful for tasks beyond retrieval, such as
classification?

• Contextual similarity and Graph Convolutional Networks (GCNs): The
GCNs effectively capture relationships and interactions within complex networks,
enhancing results in tasks involving structured data. However, graphs are not
inherently available for most image datasets, and GCNs heavily rely on these
structures to deliver significant results [141, 307]. The main challenge involves
accurately modeling the graph for effective use by the GCN.
Research question:

– How can contextual similarity information be incorporated into the input
graph utilized by Graph Convolutional Networks (GCNs) and improve their
classification results?



Chapter 1. Introduction 32

• Correlation measures and manifold learning: Manifold learning is a technique
for uncovering simpler, underlying structures in complex high-dimensional data [133].
Correlation measures quantify the similarity between data points, which is very useful
to model relationships in the data. However, this is challenging since data can be
complex and heterogeneous, involving multiple variables with nonlinear relationships
that are difficult to capture [16]. Also, outliers may present significant challenges in
data analysis.
Research questions:

– Can rank-based information be utilized to measure the correlation between images
more effectively?

– Can a correlation measure be proposed and applied to enhance image retrieval
with manifold learning?

• Contrastive learning: It has been extensively used in self-supervised and supervised
learning due to its effectiveness in learning representations that distinguish between
similar and dissimilar images. It offers an alternative to cross-entropy by yielding
more semantically meaningful image embeddings. However, most contrastive losses
rely on pairwise measures to assess the similarity between elements [143, 47], ignoring
more general neighborhood information that can be leveraged to enhance model
robustness and generalization [441].
Research question:

– How can contextual similarity information be incorporated into metric learning,
including its direct integration into losses such as contrastive loss?

The contributions presented and discussed in this work address those important
research challenges.

1.3 Dissertation Statement
Driven by the challenges identified in the literature, primarily the difficulty of

obtaining a large amount of labeled data and the increasing need for methods that exploit
contextual information, we explore the application of contextual similarity learning in
different scenarios. The main hypothesis of the work is briefly stated as follows:

Contextual similarity learning can improve the effectiveness of image retrieval
and classification tasks across general-purpose and person re-identification
(Re-ID) applications. This concept is applicable to unsupervised, semi-supervised,
and supervised approaches, particularly in contexts where labeled data is limited.



Chapter 1. Introduction 33

The hypothesis is validated by the proposed approaches and a comprehensive
experimental evaluation presented in this dissertation.

1.4 Goals and Contributions
The general objective of this work is to investigate and propose new approaches

that utilize contextual similarity information to improve the effectiveness of image retrieval
and classification, applying it to general-purpose scenarios and person re-identification.
Figure 1.1 outlines the goals and contributions and their relationships with each approach.

Contextual
Similarity
Learning

Deep Rank Noise
Estimator (DRNE)

Rank Flow
Embedding (RFE)

Hypergraph Rank
Selection and

Fusion (HRSF)

Manifold-GCN

Contextual
Contrastive Loss

(CCL)

Jaccard Max

Regression for
Query Performance

Prediction
Framework
(RQPPF)

Query performance
prediction with
synthetic data

Correlation measure
applied to manifold

learning

Selection and fusion in
Person Re-ID

Unsupervised similarity
learning and embedding

generation

Contextual contrastive
learning

Unsupervised

Semi-
Supervised

Employs contextual similarity for selecting and fusing
ranked lists using hypergraph structures.

Supervised

Computes contextual images based on
ranked lists for effectiveness estimation

with a denoising CNN.

A correlation measure that identifies maximum
similarity at different depths of ranked

lists, validated on a manifold learning algorithm. 

Computes contextual meta-features based
on ranked lists for effectiveness estimation

with regression methods.

Exploits different techniques, including hypergraphs, Cartesian
products, and connected components. It computes context-

sensitive embeddings, refined following a rank-based processing
flow, while complementary contextual information is incorporated.

GCN graphs are computed by unsupervised manifold learning methods
to enhance classification. Exported embeddings are used for retrieval.

Neighborhood information is incorporated into the supervised contrastive
loss to enhance classification.

Combining GCNs with
unsupervised similarity

learning

Supervision
Types 

Goals and
Contributions

Proposed
Approaches

Approach Overview
How is contextual similarity exploited?

Task:
Query Performance Prediction

Retrieval

Classification

Retrieval and Classification

Figure 1.1 – Overview of goals and contributions and how contextual similarity is exploited.

Notice that the proposed approaches were investigated to address the research
challenges previously discussed. Each method exploits contextual similarity differently. In
the following, an overview of each of the goals and contributions (shown in gray in the
diagram) is presented:

• Query performance prediction with synthetic data: The objective is to predict
the quality of ranked lists generated by CBIR systems without labeled data. Two
self-supervised methods were proposed; both are trained using synthetic data and
utilize the same algorithm for generating this data, but differ in their strategy:

– Based on denoising with Convolutional Neural Network (CNN):
The Deep Rank Noise Estimator (DRNE) proposes a new model architecture
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for image denoising to perform query performance prediction. The idea is to
interpret the incorrectness of a ranked list as noise in a contextual image.

– Based on regression and feature modeling: The Regression for Query
Performance Prediction Framework (RQPPF) supports diverse features
and regression models. It computes meta-features, that encode reciprocal
neighborhood information, based on unsupervised measures.

• Correlation measure applied to manifold learning: Effectively measuring
similarity among data samples represented as points in high-dimensional spaces
remains a major challenge. A rank correlation measure, the Jaccard Max, robust to
such variations is a contribution of this study. The proposed measure is suitable for
diverse scenarios and is validated on an unsupervised manifold learning algorithm
based on the Correlation Graph (CG) approach.

• Selection and fusion in person Re-ID: This contribution addresses the
challenging task of unsupervised selection and fusion of different features for
more effective person re-identification. A novel Hypergraph Rank Selection and
Fusion (HRSF) framework is proposed, which combines an unsupervised rank-based
formulation for feature selection with a robust hypergraph model for query
performance prediction and rank aggregation based on manifold learning.

• Unsupervised similarity learning and embedding generation: A novel
manifold learning algorithm named Rank Flow Embedding (RFE) for unsupervised
and semi-supervised scenarios. The proposed method is based on ideas recently
exploited by manifold learning approaches, which include hypergraphs, Cartesian
products, and connected components. The algorithm computes context-sensitive
embeddings, which are refined following a rank-based processing flow, while
complementary contextual information is incorporated. The generated embeddings
can be exploited for more effective unsupervised retrieval or semi-supervised
classification based on Graph Convolutional Networks.

• Combining GCNs and unsupervised similarity learning: A novel approach,
the Manifold-GCN, based on GCNs for semi-supervised image classification. The main
objective is to use manifold learning to model the graph structure to further improve
the GCN classification. All manifold learning algorithms employed are completely
unsupervised, which is especially useful for scenarios where the availability of labeled
data is a concern. This method is also evaluated for person Re-ID by utilizing the
embeddings exported by the GCNs.

• Contextual contrastive learning: Besides the promising results obtained by
contrastive learning approaches, they often consider pairwise measures. The
proposed Contextual Contrastive Loss (CCL) replaces pairwise image comparison



Chapter 1. Introduction 35

by introducing a new contextual similarity measure using neighboring elements.
The CCL yields a more semantically meaningful image embedding ensuring better
separability of classes in the latent space. Although supervised, the results show that
the CCL provides higher gains in cases with fewer labeled data.

1.5 Organization
The text is structured around the main contributions of this research, which have

been either published or submitted to international conferences and journals. To facilitate
understanding, the chapters are organized according to the order in Figure 1.1, based
on the type of supervision and task. In the following, a brief overview of each chapter is
provided:

• Chapter 2 - Background: describes the main concepts related to this dissertation,
including an overview of each topic and the formal definitions.

• Chapter 3 - Related Work: discusses the related work relevant to each topic
presented in this study.

• Chapter 4 - Experimental Protocol: presents the evaluation measures, datasets,
and descriptors considered in the evaluation for both general-purpose and person
re-identification scenarios.

• Chapter 5 - Self-Supervised Contextual Effectiveness Estimation Measures:
presents two approaches for query performance prediction trained on synthetic
data that use contextual representations (i.e., contextual images and contextual
meta-features) to encode information from the ranked lists. The content of this
chapter can be found in papers published in the proceedings of the International
Conference on Multimedia Retrieval (ICMR 2021) [330] and in the proceedings of the
Sixth International Conference on Artificial Intelligence and Knowledge Engineering
(AIKE 2023) [336].

• Chapter 6 - Rank Correlation Measures for Manifold Learning on
Image Retrieval: presents the Jaccard Max correlation measure, which enhances
unsupervised manifold learning results on image retrieval. The content of this chapter
is available in a paper published in the proceedings of the International Conference
on Image Processing (ICIP 2022) [324].

• Chapter 7 - Hypergraph Rank Selection and Fusion (HRSF): presents the
HRSF, an unsupervised approach for selecting and fusing different ranked lists using
hypergraph structures. The content of this chapter can be found in a paper published
in the journal of Image and Vision Computing (IVC 2022) [331].
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• Chapter 8 - Rank Flow Embedding (RFE): presents an approach that performs
unsupervised similarity learning to improve results on image retrieval. Different
techniques are exploited, including hypergraphs, Cartesian products, and connected
components on graphs. Beyond retrieval, it also generates embeddings to enhance
semi-supervised classification with GCNs. The content of this chapter can be found in
a paper published in the journal Transactions on Image Processing (TIP 2023) [334].

• Chapter 9 - Contextual Manifold Learning on Graph Convolutional
Networks (Manifold-GCN): describes a method for computing graphs through
manifold learning, which serves as input for Graph Convolutional Networks (GCNs).
This approach improves the results of semi-supervised classification tasks and is
also employed for retrieval in person re-identification. The content of this chapter
can be found in a paper published in the journal of Computer Vision and Image
Understanding (CVIU 2023) [333].

• Chapter 10 - Contextual Contrastive Loss (CCL): describes a contrastive loss
that replaces pairwise image comparison by introducing a new contextual similarity
measure using neighboring elements. The approach is validated on supervised
classification, providing higher gains especially when fewer labeled data are provided.
The content of this chapter can be found in an article submitted to the 19th
International Symposium on Visual Computing (ISVC 2024) [325].

• Chapter 11 - Conclusions: presents a discussion of the results, and an overview
of all collaborations, publications, submissions, and contributions. It also discusses
potential extensions and directions for future work.

Figure 1.2 presents the overall organization of this dissertation, highlighting the
main concepts, contributions, and their relationships. It illustrates the contributions
presented in each chapter and their associations. The legend in the upper right corner
explains the meaning of each color. The diagram is designed for flexible navigation; readers
may begin at any chapter node, marked in light blue, and trace the edges to discover
how they connect to this work’s key concepts and terms. Notice that all the proposed
approaches, in red, are interconnected to different concepts and terms (shown in gray)
that are always related to the contextual similarity learning in green. All of them were
published or submitted to international conferences and journals, as indicated by the
yellow and orange nodes, respectively.



Chapter 1. Introduction 37

C
ha

pt
er

 5
. S

el
f-S

up
er

vi
se

d
C

on
te

xt
ua

l E
ffe

ct
iv

en
es

s
Es

tim
at

io
n 

M
ea

su
re

s

C
ha

pt
er

 6
. R

an
k 

C
or

re
la

tio
n

M
ea

su
re

s 
fo

r M
an

ifo
ld

Le
ar

ni
ng

 o
n 

Im
ag

e 
R

et
rie

va
l

 

pu
bl

is
he

d

C
ha

pt
er

 7
. H

yp
er

gr
ap

h 
R

an
k

Se
le

ct
io

n 
an

d 
Fu

si
on

 (H
R

SF
)

C
ha

pt
er

 9
. C

on
te

xt
ua

l M
an

ifo
ld

Le
ar

ni
ng

 o
n 

G
ra

ph
 C

on
vo

lu
tio

na
l

N
et

w
or

ks
 (M

an
ifo

ld
 G

C
N

)

C
ha

pt
er

 8
. R

an
k 

Fl
ow

Em
be

dd
in

g 
(R

FE
)

C
ha

pt
er

 1
0.

 C
on

te
xt

ua
l

C
on

tr
as

tiv
e 

Lo
ss

 (C
C

L)

C
on

te
xt

ua
l

Si
m

ila
rit

y 
Le

ar
ni

ng

pu
bl

is
he

d

TI
P 

20
23

su
bm

itt
ed

IS
V

C
 2

02
4

pu
bl

is
he

d

C
VI

U
 2

02
3

pr
op

os
es

IV
C

 2
02

2

pr
op

os
es

IC
M

R
 2

02
1

pu
bl

is
he

d

pr
op

os
es

AI
KE

 2
02

3

pu
bl

is
he

d

pu
bl

is
he

d
pr

op
os

es
IC

IP
 2

02
2

pe
rfo

rm
s

is

ex
pl

oi
ts

co
m

pu
te

s

D
R

N
E

is

ex
pl

oi
ts

co
m

pu
te

sR
Q

PP
F

ap
pl

ie
d

to

Ja
cc

ar
d

M
ax

pe
rfo

rm
s

is
pe

rfo
rm

s

H
R

SF
pr

op
os

es

is

M
an

ifo
ld

 G
C

Npr
op

os
es

ex
po

rts

pe
rfo

rm
s

R
FE

pr
op

os
es

is pe
rfo

rm
s

C
on

te
xt

ua
l

Im
ag

es

pe
rfo

rm
s

pe
rfo

rm
s

C
C

L

C
on

te
xt

ua
l

M
et

a-
Fe

at
ur

es

Se
lf-

Su
pe

rv
is

ed

Sy
nt

he
tic

 D
at

a

co
ns

id
er

s

R
el

at
io

ns
hi

ps
am

on
g

im
ag

es

is

m
ea

su
re

s
co

rre
la

tio
n

be
tw

ee
n

C
or

re
la

tio
n

M
ea

su
re

M
an

ifo
ld

Le
ar

ni
ng

us
es

us
es

us
es

us
es

us
es

us
es

Se
le

ct
io

n 
an

d
Fu

si
on

fro
m

ap
pl

ie
d

to
]

es
tim

at
es

th
e 

qu
al

ity
 o

f

m
od

el
ed

 a
s

us
es

R
an

ke
d

Li
st

s

us
ed

 to
co

m
pu

te

Vi
su

al
 F

ea
tu

re
s

us
ed

 b
y

G
ra

ph
C

on
vo

lu
tio

na
l

N
et

w
or

ks
(G

C
N

s)

Su
pe

rv
is

ed

Se
m

i-S
up

er
vi

se
d

is

U
ns

up
er

vi
se

d

us
ed

 to
co

m
pu

te

Si
m

ila
rit

y
M

ea
su

re
s

in
pu

t
of

ty
pe

 o
f

ty
pe

 o
fG
ra

ph

us
es

ex
pl

oi
ts

U
ns

up
er

vi
se

d
R

e-
R

an
ki

ng

Em
be

dd
in

gs
C

on
ne

ct
ed

C
om

po
ne

nt
s

R
et

rie
va

l

C
la

ss
ifi

ca
tio

n

pe
rfo

rm
s

M
et

ric
Le

ar
ni

ng
R

ep
re

se
nt

at
io

n
Le

ar
ni

ng

is

U
ns

up
er

vi
se

d

ty
pe ofty
pe of

pr
ov

id
ed

 to

Im
ag

e
D

at
as

et

us
es

C
la

ss
ifi

ca
tio

n

R
et

rie
va

l

G
en

er
al

Pu
rp

os
e

Pe
rs

on
 R

e-
ID

kN
N

G
ra

ph
R

ec
ip

ro
ca

l
G

ra
ph

ex
pl

oi
ts

U
ns

up
er

vi
se

d

ex
tra

ct

Fe
at

ur
e 

Ex
tra

ct
or

s

 

pe
rfo

rm
s

Q
ue

ry
Pe

rfo
rm

an
ce

Pr
ed

ic
tio

n

us
es

pe
rfo

rm
s

ex
po

rts us
ed

 fo
r

ex
pl

oi
ts

ex
pl

oi
ts

ex
pl

oi
ts

   
   

 s
up

er
vi

si
on

 ty
pe

ta
sk

 ty
pe

   
   

   
   

co
nc

ep
ts

 a
nd

 te
rm

s

ch
ap

te
rs

   
pr

op
os

ed
 a

pp
ro

ac
he

s
co

nf
er

en
ce

s

jo
ur

na
ls

co
nt

ex
tu

al
 p

ro
xi

es
da

ta
se

t t
yp

es
co

nt
ex

tu
al

 s
im

ila
rit

y 
le

ar
ni

ng

Fi
gu

re
1.

2
–

D
iss

er
ta

tio
n

st
ru

ct
ur

e:
or

ga
ni

za
tio

n,
m

ai
n

co
nc

ep
ts

,p
ro

po
se

d
ap

pr
oa

ch
es

,a
nd

pu
bl

ic
at

io
ns

.



38

2 Background

This chapter discusses the main concepts and definitions required for a
straightforward understanding of this work, especially the methods presented in subsequent
chapters. Section 2.1 introduces definitions of machine learning and the categories of
supervision. Section 2.2 defines information retrieval and describes a content-based image
retrieval (CBIR) system and its main steps. Section 2.3 discusses feature selection and fusion
in the context of image retrieval. Section 2.4 outlines the process of person re-identification
and its workflow. Section 2.5 defines the concepts related to graph convolutional networks
and semi-supervised classification. Section 2.6 defines hypergraphs and discusses their
potential in modeling high-order relationships between elements.

2.1 Machine Learning and Categories of Supervision
Machine learning (ML) is a rapidly evolving technology with the potential to

significantly impact society in various ways [287], with multiple applications [270], especially
as deep learning continues to advance [255]. A widely accepted and general definition of
machine learning is:

“Machine learning enables computers to learn from data and make decisions
without explicit programming. It involves algorithms and statistical models
that computer systems use to perform specific tasks by relying on patterns
and inference instead of direct instructions.” [14]

An important aspect of machine learning is the use of labeled data. Labeled data refers
to any set of data that has been annotated with one or more classes to describe certain
characteristics relevant to the data. In other words, labels in the dataset can be understood
as the correct responses, instructing the learning model on the associations it needs to learn.
Unlabeled data, on the other hand, consists of data points without any corresponding
labels, requiring the model to find patterns and structures within the data. The type of
supervision defines how this data is used in the training process. There are three main
broad categories of supervision [14, 255], summarized as follows:

• Supervised learning: Learns from labeled data and makes decisions for unlabeled
data. The majority of methods belong to this category.

• Unsupervised learning: Does not require any labeled data or user intervention.

• Semi-supervised learning: Learns using both labeled and unlabeled data.
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Each type of supervision has its subcategories. For example, self-supervised
learning [107] is a subcategory of unsupervised learning. In self-supervised learning, the
system generates its own labels for training. Among the possibilities to generate these
labels, can be mentioned: (i) using synthetic data; (ii) learning one part of the input
from another part of the input, as data within the same input (e.g., an image) can be
interpreted as belonging to the same class.

This study considers the three broad types of supervision but mainly focuses
on unsupervised learning. All the proposed retrieval approaches are unsupervised,
with only minor exceptions discussed in the text. The approaches proposed for query
performance prediction train themselves on their generated synthetic data, being completely
unsupervised. The proposed classification methods are mostly semi-supervised, with only
Contextual Contrastive Learning (CCL) being supervised. However, even in semi-supervised
and supervised scenarios, the proposed approaches present advantages in scenarios with
few labeled data, which is one of the key points of this dissertation.

2.2 Content-Based Image Retrieval (CBIR)
Content-Based Image Retrieval (CBIR) [80, 294, 438] is a specialized area within

the broader field of Information Retrieval (IR) [316]. IR encompasses various approaches
in Computer Science aimed at indexing and searching for information. It can be defined
as:

“Information Retrieval deals with the representation, storage, organization,
and access to information items such as documents, web pages, structured
and semi-structured records, multimedia objects, etc. The representation and
organization of information items should provide users with easy access to
information of their interest.” [15]

With the high volume of image data available due to the evolution of technologies
to store and retrieve this content, searching for images in a database is now a crucial
and imperative task [320, 80, 60]. Originally, most information retrieval systems employed
image search based only on textual metadata and keywords [260, 284]. However, searching
based on keywords presents many limitations. Among them, it may lead to ambiguities,
that do not exist when visual content is considered, for example. Therefore, Content-Based
Image Retrieval (CBIR) [284] systems were proposed to compare and retrieve images
based on their visual information.

In these systems, images are commonly represented as feature vectors [80], which
are numerical representations of their characteristics. These vectors can capture key visual
attributes such as color [119], texture [308], and shape [103], enabling the comparison
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and matching of images within a database. The process of extracting these features
is done by a method known as a descriptor, which consists of a feature extractor and
a distance measure [316]. Initially, most CBIR systems utilized manually designed (i.e.,
hand-crafted) descriptors. However, modern descriptors predominantly rely on deep learning
techniques [294].

Data Insertion

Query
Specification

Visualization

Feature Vector
Extraction

Similarity
Computation

Ranking

Feature
Vectors

Images

Query-processing ModuleInterface Image Database

Query
Pattern

Similar
Images

Figure 2.1 – Typical architecture of a CBIR system. Figure adapted from [316].

Using these extracted features, CBIR systems store them in a database. When a
new image query is submitted, features are extracted from the query and compared to
those in the database. The system then returns a ranked list of images, sorted in descending
order of similarity to the query image. Figure 2.1 illustrates a typical architecture of CBIR
system [316] and its main steps. There are three main modules:

• Interface: This module is visible to the user and is used to submit a query image
and visualize the results. The results are presented as a ranked list, with the most
similar images to the query image appearing at the top.

• Query-processing module: It involves all the steps related to processing the query
and returning the most similar images. The first step is to extract the features from
the image provided. These features are then compared to those in the database.
Various distance or similarity measures can be used in this process, with Euclidean
distance and cosine similarity being the most common. It can also involve the use
of Memory Access Methods (MAMs) to efficiently access and retrieve relevant data
from memory, especially when dealing with large databases. After computing these
measures, the images are ranked according to the similarity or distance values. The
ranked lists are then returned to the interface module, which displays the results to
the user.
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• Image Database: The database includes all the images along with their respective
stored features, eliminating the need to recompute the features each time they
are accessed. If more than one descriptor is considered, the database may need
to store more than one feature per image. This module communicates with the
query-processing component when requested.

Over the last decade, various approaches have been proposed to improve the
effectiveness of feature extractors [260, 77, 202]. Section 2.2.1 further discusses feature
extraction, the types of descriptors, and the process of obtaining ranked lists through
distance measures. In addition to the continuous evolution and advancements in feature
extraction and deep learning techniques, unsupervised similarity learning has significantly
improved the ranking results in various scenarios by post-processing the ranked lists [240,
96]. Section 2.2.2 defines and discusses these methods, which are among the topics
investigated in this work. Section 2.2.3 presents the formal definition and notations
related to CBIR which are relevant to this study.

2.2.1 Feature Extraction and Ranking

In image retrieval systems, raw images are typically not directly used due to their
high dimensionality and the possible presence of redundant information they often contain,
which can significantly decrease the performance of the retrieval process and even make it
less effective. Instead, extractors are employed to compute feature vectors [60], which are
derived from raw images and are designed to concisely represent the visual content through
essential attributes (e.g., shape, color, texture). For instance, a 256x256 image, which has
65,536 pixels, can be expressed as a single vector of approximately 1,000 positions. The
size of the vector varies depending on the chosen approach [254].

Therefore, effectively describing images as feature vectors is a crucial task. However,
it is also very challenging since images are inherently complex and may provide a
wide variety of information depending on the context. When extracting features, the
representation of data into a vector can result in the omission or loss of relevant information,
for example. The main challenge is known as the semantic gap [24, 115] which refers to the
discrepancy between the low-level visual features and the high-level semantic meanings
that users actually perceive and are interested in. For example, a computer analyzing an
image of a picnic can identify objects and perhaps categorize the scene, but it lacks the
ability to grasp the emotional resonance, social interactions, or cultural significance that a
human might immediately recognize.

In this scenario, multiple feature extraction methods are available [294, 260]. An
effective feature extractor should provide discriminative features. This means it should
capture the crucial characteristics of the data that not only encapsulate its essence but also
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sharply differentiate between various classes or categories in the latent space. The term
latent space refers to an abstract space where the intrinsic properties and relationships of
data are represented.

The most traditional extractors, known as hand-crafted approaches consist of
manually designed methods based on human understanding and intuition about what
constitutes important and distinctive features in images for a given scenario. These often
involve specific algorithms to detect relevant visual aspects and attributes, such as colors,
textures, shapes, and key points of interest. They can be broadly categorized into three
main categories depending on how they process the input images:

• Global: They consider a holistic view, processing the entire image to capture overall
patterns and structures. This approach contrasts with local feature analysis, which
focuses on specific parts or details of the image. By evaluating global features,
algorithms can encode visual attributes, such as the overall shape, color distribution,
and texture. An example of how a global color feature vector is computed can be
understood as a process where color histograms are created by counting the number
of pixels within an image that corresponds to each of several color bins, summarizing
the distribution of colors present in the entire image. A similar process can be applied
to texture and shape as well. Some examples of methods in this category are Color
Autocorrelogram (ACC) [119], Segment Saliences (SS) [317], Local Binary Patterns
(LBP) [187], and Histogram of Oriented Gradients (HoG) [59].

• Local: Local features in image analysis refer to distinct elements within an image
that capture important information about specific regions rather than the entire
image. Analyzing local features involves extracting key points and using techniques
to encode their characteristics, allowing for more precise and efficient comparison
and manipulation of images. One of the most well-known methods for detecting and
describing local features is the Scale-Invariant Feature Transform (SIFT) [205, 427].
It identifies key points in an image that are invariant to scale and rotation, making
it highly effective for matching features across different images. Local descriptors are
often used in conjunction with a Bag of Visual Words (BoVW) model to generate
mid-level representation features [3]. The BoVW model represents an image as a
collection of local feature descriptors, which are then quantized into a finite number
of visual words. To create a histogram for the feature vector, each local feature
descriptor is assigned to the nearest visual word in the vocabulary. The histogram is
then computed by counting the frequency of each visual word in the image, resulting
in a feature vector.

• Deep Learning: Due to continuous advancements in deep learning, most features
are now extracted using these methods rather than hand-crafted algorithms. Some
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approaches even combine both strategies [222]. These models are commonly trained
on extensive datasets like ImageNet [70] to ensure more robust generalization. Rather
than making predictions, the output from the last fully connected layer of a trained
model can be used as feature representations. This layer is often preferred because it
provides a compact, high-level representation and is close to the final output. Such a
process can be applied to different deep learning methods, including Convolutional
Neural Networks (CNNs) [110] and Transformers [77, 202].

After computing the features, the distance between them is calculated to obtain
ranked lists. Table 2.1 presents a list of some traditional pairwise distance measures
commonly used in this process along with their equations, where δ denotes a distance
function. The variables x1 and x2 represent two feature vectors in a multidimensional
space with d dimensions, where d is also the size of the vectors. Here, x(i) denotes these
i-th component of vector x. Once distances are computed, the resulting values are sorted
to generate ranked lists.

Table 2.1 – Examples of traditional distance measures.

Distance Equation
Chebyshev δ(x1,x2) = maxd

i=1 |x1(i)− x2(i)|
Cosine δ(x1,x2) = 1−

∑d

i=1 x1(i)x2(i)√∑d

i=1 x1(i)2
√∑d

i=1 x2(i)2

Euclidean δ(x1,x2) =
√∑d

i=1(x1(i)− x2(i))2

Manhattan δ(x1,x2) = ∑d
i=1 |x1(i)− x2(i)|

Since feature extractors and distance measures are generally used together, the
pair of a feature and a distance measure is called a descriptor [316]. For ease of reading, in
this study, the terms descriptor and features are used interchangeably.

In this work, a wide variety of descriptors from different categories were considered.
All features are extracted through an unsupervised process, without using any labeled data
from the target dataset since deep learning descriptors always perform transfer learning.
A complete list of all descriptors used and other details are presented in Section 4.2.

2.2.2 Unsupervised Similarity Learning for Re-Ranking

Despite the significant evolution in descriptors and more sophisticated methods for
computing similarity between features, the semantic gap [24, 115] continues to be one of the
main challenges. To address this and other issues, post-processing approaches have been
employed to improve the retrieval results. Initially, most of these algorithms were based
on relevance feedback [312]. However, relevance feedback methods require considerable
amounts of supervision, which is often costly or not possible in many scenarios.
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As an alternative in scenarios with limited supervision, unsupervised similarity
learning approaches have been proposed. These methods are highly promising because
they can provide gains in retrieval results by post-processing similarity matrices or ranked
lists without requiring labeled data. Even with the advancement of deep learning, these
methods continue to demonstrate significant effectiveness gains by exploiting the similarity
relationships in the neighborhood and considering the geometry and underlying structure
of the datasets [250]. These approaches can employ various strategies such as graph
transduction [381], diffusion processes [382], affinity learning [384], manifold learning [241],
re-ranking [237], and contextual measures [128]. It is important to note that a single
method, though not necessarily common, can integrate multiple of these techniques [252].

In this work, the term re-ranking is often used as a synonym for unsupervised
similarity learning as our focus is on rank-based approaches that utilize contextual similarity
information. Also, not all methods consider similarity measures, some operate with distances
instead. For re-ranking, using similarities in the learning process is generally preferred since
it enhances scalability and allows the use of sparse matrices, which require significantly less
memory. Therefore, for convenience, the term similarity is used in most cases. Figure 2.2
provides an overview of the main steps involved in utilizing unsupervised similarity learning
for image retrieval.

Unsupervised
Similarity
Learning

[25.2 0.7 ... 0.8 12.3]
...

[71.3 5.1 ... 1.6 25.4]

Feature Vectors   50.0 0.8 ... 0.8 11.9
  ...

  12.3 0.6 ... 0.1 50.0[ ]
Similarity Matrix

Image
Dataset

Ranked Lists

Improved
Ranked Lists

Feature
Extraction

Compute
Similarities

...

...

Figure 2.2 – Overview of unsupervised similarity learning workflow for image retrieval.

First, features are extracted from an image dataset, and similarities are computed
based on these features. This can be efficiently performed by optimized indexing algorithms,
such as the BallTree [234]. There is a great variety of indexing approaches [283], and
a discussion about them is beyond the scope of this work. The input for unsupervised
similarity learning approaches varies depending on the specific method. Some only handle
similarity or distance matrices, others only work with ranked data, and some methods
allow any of the two. As output, improved ranked lists are obtained, which are generally
more effective than the original ones.

Different techniques are employed by re-ranking approaches: graphs [249, 251],
Cartesian products [332], search trees [253], correlation measures [240, 249], and others.
For example, RL-Sim [240] assesses the correlation between ranked lists. This correlation
data is then utilized to create a similarity matrix, which is part of the method during the
learning phase. The underlying concept is that if two items have ranked lists with high
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similarity, it is likely that the items themselves are similar, and vice versa.

Another example is the Correlation Graph (CG) [249], which creates a graph where
each node represents an image, and edges are formed between images if their correlation
is above a specified threshold. The method iterates over various thresholds and updates
an internal similarity matrix. This matrix is then used to reorder the ranked lists.

2.2.3 Formal Definitions and Notations

This section presents the formal definition and the main concepts for the image
retrieval problem addressed in this work. The definitions adopted are similar to those used
in the literature and in other re-ranking approaches [316, 329, 328].

• Retrieval and Rank Model

Let C={o1, o2, . . . , oN} be an object collection, where N = |C| denotes the collection
size. In this work, an object refers to an image. Let us consider a retrieval task where,
given a query image, returns a list of images from the collection C.

Formally, given a query image oq, a ranker denoted by Rj computes a ranked
list τq=(o1, o2, . . . , ok) in response to the query. The ranked list τq can be defined
as a permutation of a set CL which contains the L most similar images to image oq

in the collection C. The permutation τq is a bijection from the set CL onto the set
[L] = {1, 2, . . . , L}. The τq(i) notation denotes the position (i.e., rank) of image oi in the
ranked list τq, such that τq(i) ∈ Z+

>0.

The ranker Rj can be defined based on diverse approaches, including feature
extraction or learning methods. In this work, feature-based approaches are considered,
defining R as a tuple (ϵ, δ), where ϵ : C → Rd is a function that extracts a feature vector
vx from an image ox ∈ C; and δ: Rd × Rd → R+ is a distance function that computes the
distance between two images according to their corresponding feature vectors. Formally,
the distance between two images oi, oj is defined by δ(ϵ(oi), ϵ(oj)). The notation δ(i, j) is
used for readability purposes.

A ranked list can be computed by sorting images in a crescent order of distance.
In terms of ranking positions, we can say that if image oi is ranked before image oj in the
ranked list of image oq, that is, τq(i) < τq(j), then δ(q, i) ≤ δ(q, j). Taking every image
in the collection as a query image oq, a set of ranked lists T = {τ1, τ2, . . . , τN} can be
obtained.

Different features and distance functions give rise to different rankers which, in turn,
produce distinct sets of ranked lists T . Let R = {R1, R2, . . . , Rm} be a set of rankers and
Rj ∈ R, we denote by Tj the set of ranked lists produced by Rj. A ranked list computed
by the ranker Rj in response to a query oq is denoted by τj,q.
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• The Neighborhood Set

Based on the rank model, the neighborhood set can also be defined. Let oq be a
multimedia object taken as query, a neighborhood set N (q, k) that contains the k most
similar multimedia objects to oq can be defined as follows:

N (q, k) = {S ⊆ C, |S| = k ∧ ∀oi ∈ S, oj ∈ C − S : τq(i) < τq(j)}. (2.1)

• Distance and Similarity Matrices

Besides ranked lists, the distance δ(i, j) between all objects obji, objj ∈ C can also
be calculated to obtain a square distance matrix D, such that Dij = δ(i, j). Analogously,
a similar process can be employed to obtain a square similarity matrix S. Let ρ : Rd × Rd

→ R be a function that computes the similarity between images, such that, Sij = ρ(i, j)
corresponds to the similarity between images oi and oj. The distance matrix S or the
similarity matrix S are used as input for various post-processing methods, which often
learn more effective similarity or distance measures. These matrices can also be used to
compute ranked list representations, as previously described.

2.3 Feature Selection and Fusion
Since different descriptors and methods provide complementary retrieval results, an

interesting approach is to combine them [260]. Various works have shown that by fusing
diverse features, effectiveness can significantly improve [260, 322, 329, 328]. This scenario
leads to two challenging and complex tasks. The first is the selection: how to select a
combination of features? The second is the fusion: how to fuse the selected features?

In terms of efficiency, the selection is imperative. While the number of features
increases linearly, the number of combinations grows exponentially. For example, for 10
features, there are 1024 combinations of any size. However, with 20 features, the number
of possible combinations increases to 1,048,576.

There are many types of selection algorithms. This section discusses the most
representative and relevant ones in the context of this study. For feature-level selection, one
notable algorithm is Relief [322], which estimates the importance of features by assessing
how well their values distinguish between nearby instances. There are other approaches,
that also work with features such as: Laplace [112], Spectral Regression (SPEC) [421],
Muti-cluster Feature Selection (MCFS) [36], Non-negative Discriminative Feature Selection
(NDFS) [182]. These algorithms are mostly exploited for classification.

Another type of selection, which is the focus of this study, is rank-based
selection [329]. One advantage of using ranked lists is the ability to directly exploit
contextual similarity information and relationships among images. The idea is that
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ranked lists that are highly complementary and also effective provide good potential for
combination. In unsupervised scenarios, rank-based correlation measures can be utilized
to identify the most complementary ranked lists. To determine the most effective lists,
effectiveness estimation measures, also known as query performance prediction (QPP),
can be employed. After choosing a combination using a criteria, the next step is fusion.

The fusion process involves taking a set of data from multiple sources and using an
algorithm that combines these features to produce a more effective output. In the context
of this work, the terms combination and fusion can be used interchangeably in many cases.
However, there is a subtle difference in their meanings. While combination refers to the set
of features or descriptors, fusion is the process an algorithm uses to learn from the features
in the combination. The fusion approaches are categorized into two main groups [260]:

• Early Fusion: This term is broadly used for feature-level fusion. It involves fusing
the raw feature vectors, which are the output of the feature extractors. Some
simple examples of early fusion are the concatenation, weighting, multiplication, or
summation of feature vectors. For image retrieval, this fusion is performed prior to
the computation of the similarity matrices or ranked lists.

• Late Fusion: Contrary to early fusion, late fusion performs combination using
structures derived from the feature vectors, such as the similarity matrices or ranked
lists. Some examples in this category are the multiplication or summation of matrices.
There are also unsupervised similarity learning approaches that compute fusion
based on the ranked lists, this strategy is known as rank-aggregation.

It should be noted that a system can utilize both early and late fusion. While
some researchers identify additional categories, such as intermediate fusion, which occurs
between early and late, they are beyond the scope of this study. This work specifically
concentrates on unsupervised rank-based late fusion.

A more detailed description of query performance prediction and correlation
measures, that can be used for rank-based selection are presented in Sections 2.3.1
and 2.3.2, respectively. Re-ranking methods can be used for fusion, with a strategy
called rank-aggregation, discussed in Section 2.3.3.

2.3.1 Query Performance Prediction

The task of query performance prediction (QPP) involves estimating the
effectiveness of a ranked list without relying on labeled data. Also commonly referred to as
query difficulty prediction, query difficulty estimation, and effectiveness estimation; these
methods were initially developed for traditional text-based information retrieval systems.
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Despite recent advancements, applying QPP to image retrieval is still a largely unexplored
area [262]. However, QPP in text and image retrieval is equally important.

For selecting ranked lists, QPP is crucial in distinguishing poorly performing queries
from effective ones. It helps to filter out low-quality results and select only the most efficient
ranked lists for combination. Moreover, QPP has several other applications, including:

• Controlling the convergence of a retrieval algorithm by measuring the quality
of ranked lists. When the quality no longer varies significantly, it indicates that
convergence has been achieved, for example.

• Enhancing search optimization by predicting query performance, thereby ensuring
that the most relevant information is presented to the user.

• Providing visualization of the cases where a retrieval system is not performing as
expected, these cases work as possible suggestions for enhancements of the algorithms
employed.

In terms of supervision, there are both supervised and unsupervised QPP
approaches. A QPP method can be trained on one dataset before being applied to a
target dataset, which is an example of transfer learning. In this work, only completely
unsupervised approaches were considered.

Two examples of QPP measures that estimate the effectiveness of ranked lists are
the Authority [243] and Reciprocal Density [248]. Both yield a score in the range of [0, 1],
where a higher score indicates a ranked list of higher effectiveness and vice versa. They
are both based on the cluster hypothesis [155], considering that the images belonging
to a highly effective ranked list should appear in the ranked lists of each other. Both
count the number of reciprocal neighbors in the top-k positions, which can be understood
as measuring the density of a neighborhood graph. In contrast to Authority, Reciprocal
Density assigns a weight based on the positions in which the elements appear.

2.3.2 Rank Correlation Measures

Measuring the correlation is essential to know the degree of similarity between
different data points. Diverse types of measures assess the correlation between features,
scores, and other types of variables. In the context of this work, rank-based correlation
measures are employed for ranked list selection and improving the effectiveness of re-ranking
approaches.

The concept of rank-based correlation involves measuring the similarity between
two ranked lists [16]. For fusion, the correlation is used to assess the similarity between
ranked lists of the same query from different descriptors. This measurement helps
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determine the level of complementarity or redundancy among descriptors. A high degree
of complementarity is generally preferred in fusion processes [329]. There are also many
other applications of rank-based correlation, including:

• If the ranked list of two images shows high similarity, these images are likely
similar [155]. Therefore, the similarity learning approach can bring these two images
closer [240] in the learning space.

• Graph approaches can model networks in which nodes depict images and edges
represent correlations between them [249]. These correlations can be used to weigh
the edges or to create edges only between the most similar nodes. More effective
correlation measures can lead to more accurate results.

• For pseudo-label generation [264]. If a labeled image belongs to the same class as an
unlabeled image and both have ranked highly correlated ranked lists, they probably
belong to the same class.

• It can be used to detect and filter outliers. If an image has a lower correlation with
all of the other elements in the dataset, it is probably an outlier.

Various properties can be considered when measuring the similarity between ranked
lists, such as: (i) the number of elements that the lists have in common; (ii) the order that
elements appear in both lists; (iii) by counting the number of overlaps in different depths.

The Jaccard index, a traditional and widely used method, takes into account the
number of elements that the lists have in common [16]. It calculates a score by dividing
the length of the intersection of the two lists by the length of their union. Other traditional
measures, such as KendallTau [87], consider the order in which elements occur by counting
the number of concordant and discordant pairs. A pair is concordant if the ranks for both
elements agree in order and discordant if they disagree.

Some consider overlaps in different depths such as the case of Rank-Biased Overlap
(RBO) [358]. It measures the similarity between two ordered lists considering their order
and partial overlaps. It employs a persistence parameter to weigh the top of the lists more
heavily, calculates overlap at each depth, and sums these overlaps with decreasing weights
to produce a final similarity score.

2.3.3 Rank-Aggregation

The rank-aggregation deals with combining multiple ranked lists into a single
aggregated one [87], a classic and challenging task that has been investigated for a long
time [38, 260]. Any type of fusion that combines ranked lists can be understood as a
rank-aggregation technique. It can be used to combine ranked lists from different descriptors
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or sources aiming at providing a more effective ranked list as output. This research is
dedicated specifically to rank-aggregation in unsupervised image retrieval, but there are
various other applications in different fields (e.g., social choice theory, collaborative filtering,
web search, statistics, databases, sports, and admission systems) [38, 7].

An example of a traditional approach in this category is the Borda Count [394],
where each item receives points based on its position in each ranked list: the top-ranked
item gets the most points, decreasing down to the lowest-ranked item. The points across
all ranked lists are summed for each item, and items are then ranked from highest to
lowest total score. Other examples include MedianRank [87], where items are ranked based
on the median of their positions in all rankings; and Copeland’s Method, where each item
competes against every other item in pairwise comparisons across all lists. An item scores
a point for each pairwise win, and items are ranked based on their total scores.

In addition to conventional approaches, several re-ranking methods support the
input of one or more ranked lists to perform rank-aggregation. Figure 2.3 illustrates the
workflow of a re-ranking algorithm employed for rank-aggregation. From a single dataset,
various descriptors can be used to generate different ranked lists. These lists are then
combined through rank aggregation to produce a single, consolidated ranked list as output.

Descriptor 1

Unsupervised
Similarity Learning
(Rank-Aggregation)

Image
Dataset

Aggregated
Ranked Lists

...

Descriptor 2

Descriptor n

Ranked Lists 1

...

...

...

Ranked Lists 2

...

Ranked Lists n

...

Figure 2.3 – Overview of unsupervised similarity learning applied for rank-aggregation in image
retrieval. Complementary information from multiple descriptors is combined.

Re-ranking methods typically consider an internal similarity matrix learned during
the algorithm execution [326]. This matrix is also used to reorder ranked lists through a
sorting process, such as insertion sort, heap sort, or merge sort. This matrix is generally
initialized considering the positions of the ranked lists provided as input. For efficiency
and scalability purposes, a sparse matrix can be utilized. Such a process is executed for a
single set of ranked lists (i.e., ranker). When multiple rankers are provided as input (i.e.
rank-aggregation), there are multiple ways that the method can handle various inputs,
among them, the most common:

1. The matrix initialization is performed individually for each ranker, and the matrices
are then combined through an arithmetic operation (e.g., sum or multiplication).
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The rest of the algorithm proceeds unchanged, in the same manner as it would for a
single input ranker.

2. The algorithm is executed separately for each ranker, and the individual matrices from
each ranker’s execution are subsequently combined through arithmetic operations.

Among the approaches used in this work, the Correlation Graph (CG) [249],
considered in Chapter 6, and the proposed Rank Flow Embedding (RFE) [334], presented
in Chapter 8, employ strategy (2). All other approaches [251, 252] utilize strategy (1).

It is important to note that, depending on the task, aggregation can be performed
in multiple steps. For example, it is possible to aggregate rankers pairs and merge them
individually. However, these are beyond the scope of this work. This study considers
aggregation where all rankers are simultaneously combined as input.

2.4 Person Re-Identification
Person re-identification, usually abbreviated as Re-ID, is crucial for enhancing

security and surveillance systems by enabling the identification of individuals across
multiple camera feeds [25, 390]. Among the various applications, it can improve public
safety by assisting in crime prevention, suspect tracking, crowd control, and finding
missing persons in different environments (e.g., shopping malls, railway stations, airports,
universities, and huge public events) [288]. The task of person re-identification is defined
in the literature as follows:

“Given an image or video of a person from a camera, the re-identification
process involves identifying the same individual from images or videos taken
from different cameras, which may or may not have overlapping fields of view.
Re-identification is indispensable in establishing consistent labeling across
multiple cameras or even within the same camera to re-establish disconnected
or lost tracks.” [25]

However, there are variations of definitions in the literature. Some authors consider
that the cameras cannot have overlapping fields of views [176, 422, 428, 137], for example.
The Re-ID process is generally complex and consists of a sequence of main steps [426],
which are illustrated in Figure 2.4 and described as follows: (1) Detection, where, given
an image or a video frame, the regions where the people of interest are present are
segmented; (2) Tracking, where, in the case of a video, it consists of the task of following
the movement of the people detected; (3) Retrieval or Classification, where, from
the segmented person, the task is to return the individuals most similar to the person of
interest.
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Figure 2.4 – General diagram of a Re-ID system. Figure adapted from [25].

Regarding the detection stage, one of the major challenges often lies in the significant
variation in positions between images of the same person. In some datasets, the process
of separating images that belong to the same person is performed manually. However,
currently, there are various approaches in this regard, some of which are based on the
calculation of similarities between parts (patches) of the images. Although many patches
show large differences for images of the same person, some regions may indicate great
similarity, such as the facial area, unless there are occlusions, for example. In general
terms, the DPM (Deformable Parts Model) [173] method applies the extraction of patches
from images through a pre-trained network that extracts patches of different sizes, which
are grouped based on the positions they belong to on the human body, assigning a score
to each one of them. The CUHK03 [176] and Market1501 [422] datasets contain images
cropped with the DPM detector, for example. Another widely used detector is the ACF
(Aggregated Channel Features) [73], where different channels are calculated for the input
image and a decision tree provides the segmentation of the person. There are also recent
approaches that use neural networks for object detection, which can also be used to identify
pedestrians, such as in the case of the YOLO (You Only Look Once) [272] network.

In the vast majority of cases, cameras produce various videos, which have different
frames featuring the same person in motion. The tracking phase involves monitoring
an individual’s movements across a sequence of video frames following their initial
detection. Among the different approaches applied for detection, most methods search for
intersections or similarities between patches from different frames to find a match, as is
done by KCF (Kernelized Correlation Filters) [113], for example. The idea is that similar
patches from different frames usually refer to the same object. Still, there are various
challenges, such as the difficulty of tracking in cases of occlusion or intense movement, for
example. Among some of the prominent object-tracking methods known in the literature,
we can mention: BOOSTING [105], KCF (Kernelized Correlation Filters) [113], CSRT
(Discriminative Correlation Filter with Channel and Spatial Reliability) [207], MOSSE
(Minimum Output Sum of Squared Error) [32], SORT (Simple Online and Realtime
Tracking) [29]. Recently, deep learning methods have also been applied to tracking, an
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example of this is DeepSORT [361], which is a variant of SORT [29], but uses deep learning.

The person re-identification problem is addressed by many authors as an image
retrieval task [137], which is the final stage of a Re-ID system. Section 2.4.1 presents the
concepts and terminologies commonly used for Re-ID.

2.4.1 Concepts and Terminologies

This section aims to present some concepts and categories commonly used in the
Re-ID literature. The methods are categorized according to the protocols considered for
both training and testing with queries.

Currently, a large portion of Re-ID methods are based on machine learning
techniques. In general, machine learning algorithms are those that have the task of
analyzing a certain volume of data and automatically extracting patterns and information
about them, so that it is possible to make data-based decisions instead of being explicitly
programmed for a specific task [154]. Due to the increasing volume of data, these methods
have gained much attention for the possibility of automating various tasks.

For person Re-ID, this work focuses on unsupervised methods, which, despite often
being more challenging, present themselves as a promising solution in many scenarios
where there is a lack of labeled data. Among the Re-ID methods within this category, we
can mention: ARN (Adaptation and Re-Identification Network) [181]; EANet (Enhancing
Alignment Network) [118]; ECN (Exemplar Memory Convolutional Network) [431]; MAR
(MultilAbel Reference Learning) [397]; TAUDL (Tracklet Association Unsupervised Deep
Learning) [170]; UTAL (Unsupervised Tracklet Association Learning) [171].

In addition to the mentioned categories, there is also the concept of cross-domain
learning [153], which consists of training on labeled data from one or more image datasets
(training datasets are called source domains) and making predictions on a dataset where the
labeled data is completely unknown (test datasets are called target domains). Cross-domain
learning is considered a type of transfer learning. It is usually referred to as multi-source
when training is conducted on more than one dataset and as single-source for a single
dataset. Among the Re-ID methods within this category, we can mention: HHL (Hetero
and Homogeneously Learning) [430]; ATNet (Adaptive Transfer Network) [197]; CSGLP
(Camera Style Generation and Label Propagation) [273]; ISSDA (Iterative Self-Supervised
Domain Adaptation) [306].

From cross-domain learning, there are also proposals for domain-adaptive methods
(domain adaptation) [153]. In this case, the learning is very similar to cross-domain, with
the difference that a final training step is performed on the test dataset (target domain), but
without using the labeled data from this dataset. Only the labeled data from the training
dataset (source domains) are used. Among the Re-ID methods within this category,
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we can mention: EANet (Enhancing Alignment Network) [118]; SPGAN (Generative
Adversarial Network) [71]; DAAM (Domain Adaptive Attention Model) [121]; PAUL
(Patch-Based Unsupervised Learning Framework) [380]; CAMEL (Cross-view Asymmetric
Metric LEarning) [396]. Some methods may belong to more than one category, defined by
the training method used during evaluation.

Furthermore, the images in Re-ID datasets are generally subdivided into three
sets [176, 429, 422, 428]: (i) training images (training set), a set of images used for training
the methods; (ii) query images (probe set), which refer to the images that should be
used to perform retrieval against the gallery images; (iii) gallery images (gallery set), the
images that will be ranked according to their similarity to the query image. Thus, in most
cases, the method is trained on the training set and then generates a ranked list for each
query image. A ranked list contains the query image (belonging to the probe set) as the
first image, with the remaining images belonging to the gallery set ranked according to
similarity. In many cases, the subdivisions are made by the authors of the dataset, but it
should be noted that, in some cases, these protocol definitions can be altered, and there
can be different protocols for the same dataset, as in the case of CUHK03 [176, 429].
Additionally, unsupervised methods do not always perform training on the training set of
the evaluated dataset, and when they do, they do not consider the labels of this set in the
process [121, 171].

Regarding the retrieval methodology, there are two distinct ways for a Re-ID
method to perform a query: single-query or multi-query. When a single image of an
individual is used as a query, it is a single-query retrieval. On the other hand, when two or
more images are provided as input, it is a multi-query case. In some cases, both protocols
may be used, while in others only one is used. Some datasets may be used exclusively for
single-query, such as VIPeR [106], GRID [206], and CUHK01 (images from the Chinese
University of Hong Kong) [175], as these have only two images per individual. Others may
be considered in both cases, as long as there is more than one image per individual.

Additionally, there is the concept of single-shot and multi-shot in re-identification.
Single-shot refers to the scenario where only one image per person is available in the
gallery and query set, making the task challenging due to the limited number of examples.
Conversely, multi-shot involves having multiple images of each person, which provides
diverse perspectives and poses of the individuals. While multi-shot offers more samples
per person, it can also be more difficult due to the increased complexity of managing and
comparing multiple images per individual.

Table 2.2 summarizes all the concepts and terminologies discussed for person Re-ID.
There are four main categories of concepts: (i) Re-ID dataset split, where datasets are
divided into three sets provided by the dataset authors; (ii) query type, which refers to
how the queries are provided; (iii) capture frequency, which refers to the number of images
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per individual in the dataset; (iv) dataset usage, describing how the usage of datasets
affects their terminology; (v) methods category, where all methods are unsupervised but
include subcategories specific to Re-ID scenarios. Although all listed method categories are
unsupervised, the Re-ID literature often differentiates by using the terms fully unsupervised
or simply unsupervised for methods that do not involve any form of transfer learning [367].
In contrast, domain adaptive and cross-domain consider transfer learning.

Table 2.2 – Summary of concepts and terminologies discussed for Re-ID.

Category Term Description
Re-ID Dataset Split Training Set Used to train the Re-ID model. This set contains

labeled images which help the model learn how to
differentiate between different individuals.

Query Set Also known as the probe or test set, it contains
the images used as queries, which are compared
against the images in the gallery set.

Gallery Set When a query image is presented, the method
searches through the gallery set to find images
similar to the query. This set is sometimes referred
to as the reference set.

Query Type Single-Query A single image or a frame of an individual is used as
the query. It relies on a one-to-many comparison,
where the query image is compared against all
gallery images.

Multi-Query Multiple images or frames of the same individual
are used as the query. This method often aggregates
the results from all query images to return a single
ranked list.

Capture Frequency Single-Shot Each individual is represented by a single image in
the gallery and query sets.

Multi-Shot Each individual is represented by multiple images
in the gallery and query sets.

Dataset Usage Source Dataset Dataset used to train a Re-ID model.
Target Dataset Dataset used to test a Re-ID model. For testing,

query and gallery sets are considered.
Methods Category Unsupervised These methods do not rely on labeled data. They

utilize unlabeled datasets to learn discriminative
features or patterns inherent in the data.

Cross-Domain Methods (Single-Source) These methods perform transfer learning. They are
trained in a single dataset known as the source and
are tested in a different target domain.

Cross-Domain Methods (Multi-Source) In contrast to single-source methods, multi-source
cross-domain methods utilize multiple source
domains to improve the adaptability of the model
to the target domain.

Domain Adaptative Methods They are similar to cross-domain, with the
difference that a final training step is performed on
the target dataset, but without using the labeled
data from this dataset. Only the labeled data from
the source datasets are used.

2.5 Graph-Based Semi-Supervised Classification
Graphs have a wide range of applications, as they facilitate the identification and

analysis of patterns and relationships among items. Since these aspects are fundamental to
many tasks, particularly in machine learning, graph learning has emerged as an important
research field. Graph learning is a term that broadly defines machine learning methods
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that utilize graphs [369]. As shown in Figure 2.5, these approaches are divided into four
major categories [369]:

• Graph Signal Processing (GSP): These methods extend classical signal processing
techniques to graphs. In GSP, the data is represented as signals on the nodes of a
graph, and the graph structure itself is used to analyze these signals. Key concepts
include the graph Fourier transform, graph filters, and spectral analysis. These
methods are particularly useful for tasks such as smoothing, and denoising.

• Random Walk Based Methods: They leverage random walks to capture the
structure of the graph. A random walk is a stochastic process where a node is visited
based on a probability distribution over its neighbors. These methods, like DeepWalk
and Node2Vec, generate node embeddings by simulating random walks and using
the sequences of visited nodes to learn latent representations. These embeddings can
be used for various tasks, including node classification and link prediction.

• Matrix Factorization Based Methods: They decompose a graph’s adjacency
matrix or other related matrices into lower-dimensional matrices that capture latent
features of the nodes or edges. Techniques like Singular Value Decomposition (SVD)
and Non-negative Matrix Factorization (NMF) are common. These methods are
used to find latent patterns and relationships in the graph and are useful for tasks
such as recommendation systems, clustering, and community detection.

• Deep Learning Based Methods: These methods apply neural network
architectures to graph data. This category includes methods like Graph Convolutional
Networks (GCNs), Graph Attention Networks (GATs), and Graph Autoencoders.
These models can learn complex, non-linear representations of graph-structured data
and are highly effective for tasks like node classification, graph classification, and
link prediction. Deep learning methods can capture both local and global graph
structures through multiple layers of processing.

In semi-supervised learning, the use of graphs is especially advantageous [293].
Graph-based Semi-Supervised Learning (GSSL) methods generally begin by creating a
graph where the nodes represent all the samples and the weighted edges indicate the
similarity between pairs of nodes. This graph construction suggests that nodes connected
by edges with large weights are likely to have the same label, reflecting the manifold
assumption. The manifold assumption states that samples situated close to each other on
a low-dimensional manifold should have similar labels.

This work centers on semi-supervised node classification employing Graph
Convolutional Networks (GCNs), a type of Graph Neural Networks (GNNs) [141].
Section 2.5.1 discusses about GCNs and Section 2.5.2 presents the formal definitions.
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Figure 2.5 – Categorization of graph learning approaches. Figure adapted from [369].

2.5.1 Graph Convolutional Networks (GCNs)

A convolution is a mathematical operation widely used in fields like image processing,
classification, and deep learning [2]. Convolutional layers can enhance the ability of neural
networks to capture patterns in image data. In CNNs, convolutional layers help in capturing
the spatial hierarchy in images. Usually, lower layers can detect simple features like edges,
corners, and textures, while higher layers can detect more complex aspects like objects
and scenes [393].

While CNNs perform convolution in the spatial domain, applying convolution in
graph domains presents considerable challenges. Unlike images with a regular grid structure,
graphs have an irregular structure [100]. Nodes in a graph can have a variable number of
neighbors, making it difficult to apply a consistent convolution operation. In this scenario,
GCNs have been proposed to apply convolutions in the graph domain [412, 141, 135].

The input of a GCN consists of a graph, a set of features for each node, and the
labels for the nodes that are part of the training set. In most image datasets, a graph is
not readily available. Therefore, the graph must be constructed using methods such as
computing the k-nearest neighbors (kNN) or other strategies, as explored in this work. In
the following, each of the main steps of a GCN are outlined:

• Nodes initialization: Each node is initialized with the raw (i.e., original) features
provided as input. The edges are defined according to the input graph.

• Graph message passing: This step refers to the convolution operation, which is
divided into two steps:

– Neighborhood aggregation: In each layer of the GCN, every node collects
features from its immediate neighbors. The method of aggregation can vary.
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Common approaches include summing up the features, taking the mean, or
using a more complex function like a neural network to aggregate these features.

– Transformation: After aggregation, the aggregated feature vector is usually
combined with the node’s own features. This combined feature vector is then
passed through a transformation function, typically a linear transformation
followed by a non-linear activation function (e.g., ReLU). This step effectively
updates the feature representation of the nodes.

• Layer stacking: The output of the previous layer becomes the input to the next
layer. The number of layers is closely related to the neighborhood depth that the
network can analyze. Multiple layers can be stacked to allow the network to capture
higher-order dependencies in the graph (i.e., features from extended neighborhoods
beyond just immediate neighbors). With two layers, for example, a node can gather
information from its neighbors and also from the neighbors of its neighbors (2-hop
neighbors). Thus, a three-layer GNN can access information from up to 3-hop
neighbors, and so on.

• Normalization: Often, normalization techniques such as dividing by the square
root of the degree of the node and its neighbors are applied during aggregation.
This helps in stabilizing the learning process by keeping feature magnitudes in a
reasonable range.

• Output layer: For node classification, the embeddings produced by the final GCN
layer are processed through a classification layer (such as a softmax) to predict the
label of each node.

All the GCNs in this work are transductive, they require access to the entire graph
during training to effectively learn node representations. The training and inference (i.e.,
testing) procedures can be executed based on the defined steps, as follows:

• Training: The network is trained using a suitable loss function, like cross-entropy
for classification tasks. This process involves backpropagation to adjust the weights
of the network based on the difference between actual and predicted values.

• Inference: The trained model is used to predict the classes of nodes, focusing on
sections of the graph that were not exposed during training and validation.

In this study, each image is represented by a node, allowing for image classification
by representing the image dataset as a graph.
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2.5.2 Formal Definitions and Notations

In this section, we first discuss a formal definition of the semi-supervised learning
setting for classification tasks using GCNs, mostly following the notation from [146, 242].

Let C={o1, o2, . . . , on} be an object collection, where oi ∈ C denotes an image and
N denotes the collection size. The collection is represented by an undirected graph G. The
graph can be formally defined as tuple G = (V,X, E), where V denotes the node set, X is
a feature matrix, and E denotes the edge set.

The node set is defined by V = {v1, v2, . . . , vn} where each node vi ∈ V represents
an image oi ∈ C. Labels can be assigned to nodes vi ∈ V , such that a set of labels can
be defined as Y = {y1, y2, . . . , yc}. According to the labels, the node set can be more
specifically defined as V = {v1, v2, . . . , vL, vL+1, . . . , vn}, which denotes a partially labeled
data set, where VL = {vi}L

i=1 is the labeled data items subset and VU = {vi}n
i=L+1 is the

unlabeled data items subset. Formally, the training set can be seen as a labeling function
fl : VL → Y , where yi = fl(vi)∀vi ∈ VL. In general, on semi-supervised scenarios, we have
|VL| ≪ |VU |.

The feature matrix can be defined as X = [x1,x2, . . . ,xn]T ∈ Rn×d, where xi is
a d-dimensional feature vector which represents the image oi, or equivalently, the node
vi. The vector xi is obtained by a feature extraction approach, which can be defined as
function ϵ : C → Rd, such that xi = ϵ(oi).

The edge set E is a set of nodes pairs (vi, vj), formally defined as E ⊆
{(vi, vj)|(vi, vj) ∈ V 2 ∧ vi ̸= vj}. For graph-structured content, the set E is intrinsically
defined by the data. For general image data, we propose to define the set E based on the
feature matrix X. How to define an effective graph is a central challenge addressed by our
approach, discussed in the next section.

Once defined the graph G, a GCN model denoted by a function fgcn can be used
to learn an embedded representation zi for each node vi. The learned representation is
exploited to perform classification tasks. Formally, the classification goal is to learn a
function f̂l : VU → Y to predict the labels of unlabeled nodes in VU .

2.6 Hypergraph Model
A hypergraph is a generalization of a graph where edges, called hyperedges, can

connect any number of vertices [34]. In a standard graph, an edge connects exactly two
vertices. This makes hypergraphs a powerful tool for modeling complex relationships and
interactions in many applications [11, 102]. Despite their robust expressiveness, hypergraphs
have been relatively unexplored in the literature compared to graphs [11].

Hypergraphs allow for a more natural and accurate representation by capturing
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high-order interactions directly [11]. For example, in a co-authorship network, a single
hyperedge can link all authors of a paper, precisely reflecting their collaborative relationship,
which would be less accurately represented by multiple pairwise edges [19].

When attempting to model these complex interactions with traditional graphs,
significant information about the group dynamics and the interdependencies among the
nodes can be lost [11]. Hypergraphs preserve this information by inherently representing
these high-order relationships without the need for transforming them into simpler pairwise
interactions, which often require additional nodes and edges [34].

Figure 2.6 presents a hypergraph example, where the nodes and hyperedges are
denoted by vi and ei, respectively. The i is used to indicate the index. Notice that
hyperedges can be viewed as groups consisting of one or more vertices. These groups may
also overlap with one another. This can provide valuable information, which is particularly
useful in this work for contextually modeling image data.

Another important property of hypergraphs is that two different types of
weights [251] can be considered:

• Vertex weights: The weight or association of node vj to the hyperedge ei is denoted
by h(ei, vj). This weight represents the strength or significance of the relationship
between the node and the hyperedge. A hypergraph is commonly represented by an
incidence matrix H that encodes the h(ei, vj) values as exemplified in Figure 2.7.

• Hyperedge weights: The weight of hyperedge ei is denoted by hp(ei). These
weights are commonly associated with the importance of the hyperedge. They can
be computed based on various quantities depending on the application, such as the
strength of the relationships within the hyperedge and the cost associated with its
connections.

v1

v2
v3

v4

v5

v6

v7

e1
e2

e3e4

e5

Figure 2.6 – Hypergraph illustration.

H =



e1 e2 e3 e4 e5

v1 2.9 0 0 0 0
v2 5.2 1.1 0 0 0
v3 3.7 2.5 7.1 0 0
v4 0 0 0 5.9 0
v5 0 0 9.8 0 0
v6 0 0 0.8 0 0
v7 0 0 0 0 8.9


Figure 2.7 – Incidence matrix H example.
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Following this discussion, Section 2.6.1 provides a brief overview of the formal
definitions and notations of the hypergraph model considered in this work.

2.6.1 Formal Definitions and Notations

As defined in [251], a hypergraph can be described as a tuple HG = (V,Eh, hp),
where V is a set of vertices and Eh represents the set of hyperedges. The hyperedge set
Eh can be described as a collection of subsets of V such that ⋃

e∈Eh
= V . Each hyperedge

ei is assigned a positive score hp(ei), indicating the confidence in the relationships among
the vertices connected by the hyperedge ei.

Unlike graphs, which are commonly represented by adjacency matrices, hypergraphs
are represented by incidence matrices. In this work, the incidence of a hyperedge ei on a
vertice vj is represented by an incidence matrix H, where h(ei, vj) denotes the reliance of
the vertex vj to belong to a hyperedge ei.
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3 Related Work

This chapter presents the related work for the main topics of this study. Section 3.1
discusses recent works that employ similarity learning for image retrieval in general-purpose
scenarios. Section 3.2 presents an overview of the literature for unsupervised person Re-ID,
discussing the methods for feature extraction, metric learning, and the state-of-the-art.
Section 3.3 describes related works for query performance prediction in image retrieval
and investigates denoising convolutional networks that can exploit contextual information
in these tasks. Section 3.4 categorizes and summarizes the main areas of semi-supervised
classification and discusses the importance and advantages of GCNs compared to other
semi-supervised approaches. Section 3.5 reviews recent contrastive learning methods and
mentions strategies that use contextual similarity information in these scenarios.

3.1 Similarity Learning in Image Retrieval
Content-based Image Retrieval (CBIR) is a central tool behind a diversified range

of applications. In fact, it can be seen as technology that helps to organize digital picture
archives by their visual content [60], including a broad spectrum of approaches, from general
object retrieval to medical diagnostics support and person re-identification [60, 48, 438]. A
traditional task is given by a query-by-example arrangement, which consists of retrieving
the most similar images to a query image defined by the user from an image collection [420].
While involving various challenges and the fundamental open problem of robust image
understanding [60], it can also be seen as a rank-centered task, once the retrieved images
are expected to be ranked according to the user needs.

The ranking tasks performed by CBIR approaches typically rely on two basic steps:
the image content representation itself and the similarity measurement of collection images
to the query. The image representation is concerned with mapping an image to a point in
a high-dimensional feature space. The similarity measurement, in turn, relies on assessing
how close representations of collection images are from the query point in the feature
space [253]. Conventionally, it is accomplished by computing the pairwise dissimilarity
between feature representations in the Euclidean space [18].

Extensive advances have been made in image representation techniques over the
last decades. Originally, the extraction of global features defined the dominant approach,
where a myriad of features were proposed, mainly based on visual properties such as
shape, texture, and color. The global features gave rise to local feature strategies, based
on Bag-of-Words (BoW) model, largely studied over a decade [427]. More recently, the
success of deep neural networks in feature representation has made them a fundamental
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tool in image retrieval. Models pre-trained on huge datasets are broadly used through
transfer learning to extract features of images [378, 48].

Despite the huge advances in representation strategies, especially supported
by recent deep features given by Convolutional Neural Networks (CNN) and Vision
Transformers (ViT) models, a major limitation is associated with the pairwise formulation
of similarity measurements. In fact, both traditional and deep-based representations lie
on manifolds in a high-dimensional space [123] such that pairwise similarity measures are
insufficient to reveal the intrinsic relationship between images. Instead, similarities can be
estimated more accurately along the geodesic paths of the underlying data manifold [18].
The goal of such strategies is to somehow mimic human behavior in judging the similarity
among objects; i.e., by considering the context of other objects.

In this research direction, different approaches have been proposed to post-process
pairwise measures in order to compute more global and effective similarity measures [74,
382, 253, 247, 385, 251]. Different techniques and comprehensive terminology have been
employed, all following the common objective of capturing the structural similarity
information encoded in the datasets through unsupervised contextual analysis. Such
contextual-sensitive similarity measures have been successfully applied to capture the
geometry of the underlying manifold in order to improve retrieval tasks.

Diffusion processes demonstrated high potential in capturing the underlying
manifold structure [18, 125]. Diffusion processes use a weighted graph, where each image
is represented by a node, and edge weights are defined by pairwise affinity values. The
pairwise affinities are re-evaluated in the context of other images, by spreading the similarity
values across the graph. Affinities are spread on the manifold, which in turn improves the
retrieval scores [74]. Several variants have been proposed [74], including methods capable
of analyzing high-order similarity relationships [18]. Another example in this category is
the Graph Diffusion Networks (GRAD-Net) [78], which utilizes graph neural networks to
learn semantic representations that incorporate local and global manifold structures in
an unsupervised manner. Despite their robust mathematical foundation and background,
such approaches are often associated with high computational costs [252], lack of flexibility
for new instances, and poor scalability for large datasets [78].

Re-ranking and rank-based manifold learning methods constitute another
representative category of unsupervised post-processing methods [267, 21, 241, 247, 253].
In fact, ranked lists provide a rich source of contextual information once they establish
a similarity relationship among a set of images, in contrast to pairwise relations.
Additionally, the most relevant information in the ranked lists is located at top
positions, which enables the development of efficient algorithms [240]. Reciprocal similarity
relationships [241, 69, 243] and rank correlation measures [247, 21, 323] have been
successfully applied by various approaches. Recently, some approaches have begun to
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apply transformers in the re-ranking and rank-aggregation pipeline to improve feature
representations considering both local and global features [305, 442, 279, 406], although
not all of them are unsupervised [305].

Graphs and embeddings are modeling tools that also have demonstrated a high
potential for contextual similarity analysis. The shortest path in the graph is used to define
the similarity between images in [351]. Connected Components are exploited in [249, 241]
for spreading confident similarity relationships. Lately, hypergraphs have been exploited,
mainly due to their capacity to represent high-order similarity information [251, 18]. More
recently, approaches that learn a mapping function to an embedded space have been
proposed that exhibit the capacity of generalizing to new data [124], but such approaches
are still rarely considered in the literature.

On the other hand, unsupervised image retrieval and semi-supervised classification
are well-known and largely studied tasks. However, they remain challenging and
interconnected, with many applications in diverse scenarios (person re-identification [137],
remote sensing [355], medical imaging [1], and many others). Despite significant advances,
most approaches tend to focus on solving only one of these tasks, lacking the versatility to
generalize across multiple of them. Therefore, a unified method for unsupervised similarity
learning, contextual embedding, and semi-supervised classification would be desirable and
innovative.

3.2 Person Re-Identification
Person Re-ID is of critical importance in the majority of modern security and

surveillance applications [37, 55, 180, 426]. The task consists of, giving a query image
of one person, to identify the same individual across different cameras that have no
overlapping views. There are many difficulties for Re-ID retrieval [390], among them:
(i) different viewpoints, (ii) possible low-image resolutions, (iii) illumination changes,
(iv) occlusions, (v) difficulty of manually labeling data for training, (vi) large amount
of data to be processed. The challenge of improving the effectiveness of these systems,
especially in open-world scenarios, has attracted a lot of research efforts from the scientific
community [137, 426, 390].

Initially, person Re-ID retrieval systems were mainly based on the use of
hand-crafted feature representations [387, 106, 213, 217, 184, 192, 422, 375, 176]. Besides
that, other strategies commonly used for generic image retrieval, like the bag of visual
words [419, 422], have also been employed. Aiming at further improving the quality of the
results, rather than using traditional distance measures, researchers have proposed metric
learning approaches for Re-ID [184, 156, 94, 216, 411], most of them based on supervised
models. In [137], an extensive evaluation of multiple combinations of feature extractors
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and metric learning approaches is discussed.

Due to the significant impact of deep learning on common image retrieval and
machine learning [390], the Convolutional Neural Networks (CNN) also have gained
a lot of attention and have been widely employed to solve Re-ID tasks in the recent
years [390, 437, 436, 39, 177, 301, 153, 118, 197, 310]. Among the works, existing networks
have been trained for Re-ID [110, 275], and some new architectures have been proposed
solely focusing on Re-ID [437, 436, 39, 177, 301].

Despite the success of deep learning, one of the main difficulties resides in the lack
of large publicly available Re-ID datasets for training [390], mainly because manually
labeling images is a very difficult task, especially in open-world scenarios [137], where the
datasets may increase dynamically. In order to mitigate this problem, many authors have
proposed multi-source training, which consists of joining multiple available datasets for
training [370, 396, 153], usually increasing the network capacity for generalization.

However, despite several advances in multi-source approaches, there is an inevitable
need for intensive manual annotation to obtain training data. In practice, the demand for
extensive training data restricts the generalization and scalability of supervised approaches,
especially on person Re-ID tasks, which are not only resource-intensive to acquire identity
annotation but also impractical for large-scale data [188, 189].

Usually, there are two main steps associated with the Re-ID labeling process [443,
390, 444]: (i) intra-camera annotation that requires comparing a person with all the other
unlabeled persons in a single camera with multiple views; and (ii) inter-camera that requires
to match a person across different cameras with multiple views. Let P be the number of
persons and S the number of camera views. The intra-camera annotation complexity is
O(S×P 2) and inter-camera annotation complexity ranges from O(S×P 2) and O(S2×P 2).
The worst case of inter-camera occurs when not all persons appear in every camera view
in the majority of cases, which makes the association required to repeat for all V camera
views [443, 444]. Commonly, inter-camera association significantly increases standard
annotation costs. There are approaches that mitigate these issues; among them there is
the Intra-Camera Supervised (ICS) [443, 444], Multi-Task Multi-Label (MATE) [443, 444],
and Cross-camera Feature Prediction [97], which were recently proposed.

Due to the challenge of obtaining large amounts of strongly labeled data,
semi-supervised methods have been employed, which is a typical strategy for supervision
minimization. Based on information learned from a small set of labeled data, the idea
is to generate labels from unlabeled training data. Some research has been made in this
direction [88, 200, 350, 373]. However, these methods often suffer from performance
degradation and often require a large proportion of expensive cross-view pairwise
labeling [443].
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There are also weakly supervised strategies that replace accurate labels with
inaccurate annotations. In [219], the authors proposed the idea of obtaining multiple
bounding boxes of the same person from untrimmed videos. This is done by training a
deep learning model capable of extracting multiple bounding boxes of the same person
in a video. Recently, [349] proposed to replace image-level annotations with bag-level
annotations. Weakly supervised Re-ID is very challenging since it is rather difficult to
model the considerable variances across camera views (e.g. occlusion and illumination)
without using strong label data [219, 443].

As an alternative solution, unsupervised approaches [181, 431, 397, 170, 171, 168,
395, 188, 189] have been attracting a lot of attention from the research community,
especially because, once labeled data are not required, the methods become more suitable
for real-world scenarios. In a promising research direction, to address the lack of labels
issue, there are works proposed to post-process person Re-ID results by analyzing
similarity relationships encoded in the datasets. Several authors have proposed unsupervised
re-ranking approaches for Re-ID [429, 174, 225, 165, 211, 96, 388, 95, 108]. In [429], the
original distances among images are improved by calculating the Jaccard correlation scores
of each ranked list. Various approaches exploit the reciprocal neighborhood information
and other co-occurrence indexes aiming at improving the ranking results.

Another strategy commonly employed on generic unsupervised image retrieval and
few exploited on Re-ID tasks consists in fusion approaches [260]. In general, both broad
categories of fusion have been successfully used in generic image retrieval: (i) early fusion,
which combines the feature vectors; and (ii) late fusion, which usually combines ranked
lists. Significant results have been achieved based on the fusion of different ranked lists
and features [329, 352], with the purpose of obtaining more effective results by exploiting
the complementarity of each input.

On person Re-ID tasks, some authors have proposed late fusion strategies based on
rank aggregation [389, 424]. In [424], the aggregation is performed by attributing weights
for each query of each ranker, but no pre-selection of features is performed, and all the
features are used as input for the fusion step. There are also early fusion approaches for
Re-ID, as [9], that propose a supervised multi-hypergraph fusion model for early fusion of
feature extractors. It learns a hypergraph for each feature through a star expansion strategy
and they are fused according to weights that the method has learned from training. In [403],
a hypergraph structure is used with a deep learning model to improve the performance of
the acquired features for Re-ID.

Although fusing different features can represent a significant advantage due to
extra information available, how to choose what features to fuse can be a challenging
task. Even for supervised approaches, selecting highly effective combinations of visual
features remains a complex task, since it is necessary to consider various aspects, such as
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diversity and complementarity of results. Therefore, selecting features in an unsupervised
way, without any labeled data is even more challenging since no information about the
effectiveness of individual visual features is available.

The remaining of this section focuses on specific topics related to Re-ID and is
organized as follows. Section 3.2.1 outlines the main feature extraction approaches for
Re-ID. Section 3.2.2 presents some metric learning approaches and their applications.
Section 3.2.3 discusses state-of-the-art methods for person re-identification and their
categories.

3.2.1 Feature Extraction

Different works propose various methods for feature extraction, aiming to extract
the most discriminative (relevant) information from the data. Among the most commonly
traditional ones used in the context of Re-ID are:

• ELF [106], which calculates color histograms in different types of color spaces (RGB,
YCbCr, and HSV), texture histograms using Schmid [276] and Gabor [89] filters,
and finally concatenates this information into a single vector;

• LDFV [212], composed of local descriptors that store spatial information of pixels,
intensity, and gradient information using Fisher vector representations [303];

• gBiCov [213], where biologically inspired features are stored in covariance descriptors;

• SIFT-DenseColor (SDC) [419], in which each image is subdivided into different
regions, applying color histograms and SIFT feature extractors to each region,
constructing something similar to a visual dictionary;

• LOMO [184], where scale-invariant HSV color and LBP [187] histograms are extracted
by a multi-scale algorithm known as Retinex and then subjected to a horizontal
max-pooling step;

• GOG [217], where the image is subdivided into horizontal strips, and the regions are
separated such that each part is modeled according to a Gaussian distribution and
then condensed into a single Gaussian distribution.

Moreover, due to the evolution of deep learning, most researchers started
using different convolutional neural network architectures (AlexNet [151], ResNet [110],
VGGNet [198], among others) to extract feature representations of the individuals, since
these methods showed better generalization than the traditional ones. Generally, pre-trained
networks on the ImageNet [70] dataset, which are general-purpose, are considered and
subsequently retrained for the specific Re-ID task. There are also proposals of networks
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specifically designed for Re-ID, such as OSNET [437, 436], MLFN [39], and HACNN [177],
for example. Another example is a two-branch CNN architecture [377] introduced for
person re-identification in video surveillance, extracting both global and local features,
which employs an adaptive triplet loss function to improve learning efficiency during
network training.

Some recent works employ the use of Vision Transformers, such as the Transformer
Re-ID (TransReID) [111] that uses a transformer-based framework to capture robust
and discriminative features by processing images as sequences of patches, overcoming
information loss seen in CNN-based methods. Similarly, the Domain Generalization
Person Re-ID (DGReID) [226] proposed a part-aware transformer model that enhances
domain generalization by leveraging a transformer architecture that focuses on local parts
of images. This is achieved through a proxy task that helps the model learn generic
features by comparing local parts of images regardless of their ID labels, thereby reducing
domain-specific biases.

3.2.2 Metric Learning

Distance measures are fundamental and aim to present high distances for feature
vectors of distinct individuals and low values for representations of the same individual [134].
Initially, most systems used the Euclidean distance (also known as l2 distance). However,
the results using this approach are not always effective.

As a way to incorporate training techniques that consider labeled data, metric
learning methods have been proposed. The most common formulation is based on
Mahalanobis distance functions, which generalize the Euclidean distance using linear
scales and rotations in the feature space. In this case, the squared distance δ between two
vectors x1 and x2 can be written as:

δ(x1,x2) = (x1 − x2)TMp(x1 − x2), (3.1)

where Mp is a positive semi-definite matrix. Equation 3.1 can even be used in convex
optimization problems as proposed in [156].

In the context of Re-ID, one of the most well-known methods for metric learning is
the keep-it-simple-and-straightforward (KISSME) [156], which is based on Equation 3.1.
The idea involves determining how similar the elements within a pair (i, j) are using
a likelihood ratio test. The pairwise difference is applied (xi,j = xi − xj) and modeled
according to a Gaussian distribution with zero mean.

Moreover, several other techniques are proposed based on Equation 3.1, such as
large margin nearest neighbor learning (LMNN) [360], which is based on nearest neighbor
classification. In this method, a perimeter for the neighbors is defined. Those within
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the region are considered neighbors, and those outside the region are considered as not
belonging to the same class.

In addition to distance learning methods, there are also those based on feature
subspace learning. In [184], the learning of a projection w to a lower-dimensional space
is proposed, following a procedure similar to what occurs in linear discriminant analysis
(LDA) [126]:

J(w) = wTSbw

wTSww
, (3.2)

where Sb and Sw are the between-class and within-class scatter matrices. After that, a
distance learning step is performed with KISSME.

In other cases, some methods, instead of using Mahalanobis distance, use classifiers
such as support vector machines (SVM). Besides these traditional approaches, there are
also techniques based on deep learning [446], such as in [391], where the input image is
partitioned into three overlapping horizontal parts that are subjected to a convolutional
layer and subsequently a fully connected layer that fuses the data and returns a vector
to represent the image. Another example is in [386], which performs metric learning by
minimizing the distances of similar pairs and vice versa using a network with Inception
architecture [302], employing a global loss function in addition to the local loss to regularize
the network.

Recently, most research has focused on improving the generalization and efficiency
of person re-identification through deep metric learning [4, 81, 446, 400]. Current methods
often face limitations such as high memory and computational costs associated with
classification parameters or class memory, and the inefficiency of random sampling methods
like the PK sampler [134, 400, 114], a popular random sampling method Re-ID. Among
the recent approaches, there is a new mini-batch sampling method called Graph Sampling
(GS) [186]. GS constructs a nearest neighbor relationship graph for all classes at the
beginning of each epoch and forms mini-batches from a randomly selected class and
its nearest neighbors. This approach aims to provide more informative and challenging
examples, enhancing learning efficiency and performance. However, as with most of the
approaches in this category, GS requires supervised training.

3.2.3 Evolution of the State-of-the-Art

It is important to highlight that the Re-ID literature comprises an extensive set of
relevant works, which are being produced at an increasingly rapid pace, often making it
difficult to provide a comprehensive view of all existing methods. This is mainly due to
it being an area of intense research and also to the significant advances in the fields of
machine learning and CBIR systems in recent years [137].
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Among the main approaches mentioned, a large part of the current state-of-the-art
consists of Convolutional Neural Networks (CNNs) [437] and, more recently, Vision
Transformers (ViT) [111]. Re-training of architectures previously trained on the ImageNet
dataset [70] is commonly performed for Re-ID applications [390, 304]. However, one of the
biggest bottlenecks for training neural networks in Re-ID is the lack of labeled data, so
networks that require few labels, such as some implementations of siamese networks [426],
are applied in most cases.

There are different variations of approaches that employ CNNs in this scenario [426].
In [391], the input image is partitioned into three overlapping horizontal parts that are
subjected to a convolutional layer and then a fully connected layer that fuses the data
and returns a vector to represent the image. In the case of [340], long short-term memory
(LSTM) is used in conjunction with a Siamese network. The LSTM processes parts of
the image sequentially so that spatial connections can be memorized to increase the
discriminative capacity of the networks.

In [339], it is proposed to use a gating function after each convolutional layer to
capture subtle variations when a pair of images is provided to the network. In [196], it is
proposed to integrate an attention model based on siamese networks to emphasize the
local features of the images. In [365], a method based on low-level features is presented,
including color histograms, texture, and bag of visual word approaches (such as SIFT and
SURF), which are aggregated into a Fisher vector for each image. The obtained vectors
are subjected to dimensionality reduction and subsequently used for training convolutional
neural networks.

Furthermore, as an alternative to deep learning, re-ranking methods have started
to be applied to post-process the results obtained in the retrieval stage, and promising
outcomes have been reported in the literature [426, 137, 429]. Besides the crescent use of
re-ranking for Re-ID, such approaches have been little explored in Re-ID when compared to
deep learning techniques and require further study [390]. These methods are advantageous
due to their capacity to improve the results provided by deep learning models. In general
terms, in [429], re-ranking is applied based on the idea of encoding the k nearest neighbors
into a single vector and re-ranking them using the Jaccard correlation metric. The modeling
of the data to be learned is also a topic of great relevance, which is explored in [366], where
Graph Neural Network (GNN) representations are employed to learn features, especially
in scenarios with occlusions.

Other approaches that are gaining a lot of attention and are of fundamental
importance, especially in person recognition in videos, are pose estimators and gait
recognition. Among the main works, DeepPose [319] can be cited, which uses convolutional
neural networks to classify different people by pose through the extraction of a skeleton of
points from the human body. A method that uses LSTM and residual networks for this
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purpose was also proposed [58], which provided even more effective results. Another pose
estimator is the PifPaf [149] that estimates poses by applying two layers: one to locate
the most discriminative parts of the body, the Part Intensity Field (PIF); and another to
associate body parts with each other (matching), the Part Association Field (PAF).

This work focuses on unsupervised methods for Re-ID, which, although often
more challenging, present a promising solution in many scenarios where labeled data is
scarce. Some unsupervised approaches apply hierarchical clustering and modifications to
the loss function used by the neural network to generate more effective pseudo-labels for
self-supervised training, as in the case of the Hierarchical Clustering with Hard-batch Triplet
Loss (HCT) method [402]. Also, for the generation of pseudo-labels, some authors have
used Generative Adversarial Networks (GANs) to perform domain-adaptive training [144].
A network trained to generate augmentations for a pedestrian image, enabling the extension
of training collections and transfer learning capability, was also proposed [407]. In [404],
images are divided into clusters, and augmentations are performed to reduce the distance
between elements of the same group and vice versa.

Among the most recent approaches in unsupervised Re-ID, we can mention the
Framework for Transferable Representations of Pedestrians (VAL-PAT) [23] that enhances
pedestrian analysis by learning transferable representations through self-supervised
contrastive learning, image-text contrastive learning, and multi-attribute classification.
Also employing contrastive learning, the Offline-Online Associated Camera-Aware Proxies
(O2CAP) [354] is a clustering-based approach with camera-aware proxies that splits clusters
based on camera views to better manage intra-ID variance and inter-ID similarity. This
approach employs offline and online proxy-level contrastive learning losses to associate
proxies and reduce noise from delayed pseudo-label updates. In contrast, the Discriminative
Identity-Feature Exploring and Differential Aware Learning (DIDAL) [201] addresses
intra-instance redundancy using synthetic complementary attention and GNNs. This
method extracts and models discriminative identity features and is evaluated on Re-ID
and vehicle re-identification datasets.

Table 3.1 summarizes the evolution of unsupervised state-of-the-art Re-ID methods
in the literature since 2017, with results on three datasets. More detailed information
about Re-ID datasets and effectiveness measures (R1 and MAP) is provided in Chapter 4
(Sections 4.1 and 4.2). The methods that had some type of training with labeled data were
trained on another dataset, typifying transfer learning. The abbreviations in parentheses
indicate the datasets used for training 1. For example, the use of (D, M) indicates that
training was performed on the DukeMTMC dataset (source) and testing was performed
on the Market1501 dataset (target) or vice versa. In total, there are 33 methods divided
into 4 distinct categories, which were presented in the terminology discussion introduced
1 C03 = CUHK03, M = Market1501, D = DukeMTMC, MT = MSMT17.
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in Section 2.4.1. The MAP and R1 values are presented according to the values reported
in each publication.

Comparisons with state-of-the-art Re-ID methods are discussed in different chapters,
each considering the methods available at the time of their respective publications. A
comprehensive discussion comparing the approaches proposed in this work with all the
methods in Table 3.1 is presented in Chapter 11.

Table 3.1 – State-of-the-art methods in Re-ID with results of MAP (%) and R1 (%).

Datasets
Method Year Market1501 DukeMTMC CUHK03

R1 MAP R1 MAP R1 MAP
Unsupervised Methods

ARN [181] 2018 70.3 39.4 60.2 33.4 — —
EANet [118] 2018 66.4 40.6 45.0 26.4 51.4 31.7
TAUDL [170] 2018 63.7 41.2 61.7 43.5 44.7 31.2
ECN [431] 2019 75.1 43.0 63.3 40.4 — —
MAR [397] 2019 67.7 40.0 87.1 48.0 — —
UTAL [171] 2019 69.2 46.2 62.3 44.6 56.3 42.3
SSL [189] 2020 71.7 37.8 52.5 28.6 — —
HCT [402] 2020 80.0 56.4 69.6 50.7 — —
CAP [353] 2021 91.4 79.2 81.1 67.3 — —
IICS [376] 2021 89.5 72.9 80.0 64.4 — —
RLCC [415] 2021 90.8 77.7 83.2 69.2 — —
ICE [43] 2021 93.8 82.3 83.3 69.9 — —
MGH [368] 2021 93.2 81.7 83.7 70.2 — —
MGCE-HCL [297] 2022 92.1 79.6 82.5 67.5 — —
MCRN [367] 2022 92.5 80.8 83.5 69.9 — —
O2CAP [354] 2022 92.5 82.7 83.9 71.2 — —
DIDAL [201] 2023 94.2 84.8 — — — —
VAL-PAT [23] 2023 — — 86.1 74.9 — —

Domain Adaptative Methods
HHL (D,M) [430] 2018 62.2 31.4 46.9 27.2 — —
HHL (C03) [430] 2018 56.8 29.8 42.7 23.4 — —
ATNet (D,M) [197] 2019 55.7 25.6 45.1 24.9 — —
CSGLP (D,M) [273] 2019 63.7 33.9 56.1 36.0 — —
ISSDA (D,M) [306] 2019 81.3 63.1 72.8 54.1 — —
ECN++ (D,M) [432] 2020 84.1 63.8 74.0 54.4 — —
MMCL (D,M) [348] 2020 84.4 60.4 72.4 51.4 — —
JVCT+ (D,M) [44] 2021 90.5 75.4 81.9 67.6 — —
MCRN (D,M) [367] 2022 93.8 83.8 84.5 71.5 — —

Cross-Domain Methods (single-source)
EANet (C03) [118] 2018 59.4 33.3 39.3 22.0 — —
EANet (D,M) [118] 2018 61.7 32.9 51.4 31.7 — —
SPGAN (D,M) [71] 2018 43.1 17.0 33.1 16.7 — —
DAAM (D,M) [121] 2019 42.3 17.5 29.3 14.5 — —
AF3 (D,M) [195] 2019 67.2 36.3 56.8 37.4 — —
AF3 (MT) [195] 2019 68.0 37.7 66.3 46.2 — —
PAUL (MT) [380] 2019 68.5 40.1 72.0 53.2 — —

Cross-Domain Methods (multi-source)
CAMEL [396] 2017 54.5 26.3 — — 31.9 —
EMTL [370] 2018 52.8 25.1 39.7 22.3 — —
Baseline by [153] 2019 80.5 56.8 67.4 46.9 29.4 27.4
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3.3 Query Performance Prediction
Query performance prediction (QPP) [233] is a challenging task that consists of

predicting the quality of results generated by an IR system. The key challenges [262]
include: (i) most methods lack generalization for different evaluation scenarios since
the quality of queries can vary significantly; (ii) in the absence of labeled information,
predicting the quality of a query is a complex task requiring methods to exploit different
patterns and relationships within the data, which enforces the need for modeling the
information appropriately; (iii) there is no widely used protocol for evaluating these
approaches, but QPP methods in image search often use AP effectiveness measures and
the Pearson coefficient.

There are two main categories of QPP approaches: pre-retrieval and
post-retrieval [262]. Pre-retrieval QPP methods [56, 374] estimate the effectiveness of a
search query prior to the retrieval of any documents. These methods can rely on analyzing
the query itself, considering factors such as query length, term specificity, and term
frequency within a corpus. This work focuses on post-retrieval QPP methods [243, 248]. In
contrast to pre-retrieval methods, post-retrieval methods predict the quality of the query
after the retrieval process has taken place. They utilize information from the retrieved
documents, such as relevance scores, document features, and feedback mechanisms, to
assess the quality and effectiveness of the query in producing relevant results.

Initially proposed in ad-hoc text retrieval [56], such approaches also attracted the
attention of the image retrieval research community [179, 374, 233, 266, 248], assuming a
diverse taxonomy as query difficulty prediction [374], query difficulty estimation [179], and
effectiveness estimation [266, 248]. Despite recent advances, query performance prediction
in CBIR remains a scarce and largely unexplored task when compared to text retrieval [262].

One of the earliest contributions to QPP in the image domain [374] utilized query
words to calculate a set of four text-based pre-retrieval features and trained a model
for QPP in image retrieval. However, later research shifted focus towards post-retrieval
predictors [262]. Some works employed textual queries to perform post-retrieval QPP image
retrieval in different scenarios [313, 314], including web image search [314]. Among other
research directions, some approaches introduced post-retrieval predictors that categorize the
retrieved images into pseudo-positive and pseudo-negative groups using pseudo-relevance
feedback [131, 130]. Then, a voting scheme is employed to determine the relevance of
these images. These pseudo-relevance labels are subsequently used to estimate the Average
Precision (AP).

Given the importance of appropriately modeling information in these scenarios, the
Authority [243] and Reciprocal Density [248] measures were proposed based on graph-based
formulations of ranking information. They predict a score that estimates the effectiveness
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of ranked lists of image queries in a completely unsupervised manner based on the cluster
hypothesis [155]. The cluster hypothesis considers that the images belonging to a highly
effective ranked list should appear in the ranked lists of each other.

With the rise of deep learning, an approach [300] proposed to transform the ranked
list of images into a similarity or correlation matrix, which is then fed into a Convolutional
Neural Network (CNN) regression model for retrieval quality evaluation. However, the
method is supervised.

In light of this discussion, this work proposes two novel self-supervised approaches
for QPP in image retrieval: Deep Rank Noise Estimator (DNRE) and Regression for Query
Performance Prediction Framework (RQPPF), both presented in Chapter 5. In addition
to using synthetic data for training, these methods also incorporate innovative modeling
techniques to leverage ranked list data and exploit contextual information.

While the RQPPF models meta-features to train different regression models, DRNE
employs a denoising CNN on images computed from ranked lists. The DRNE transforms
ranked lists, which are numeric data, into visual images for processing by denoising
convolutional neural networks. This is a challenging and also relatively unexplored task.
This is an innovative approach in comparison to related works [179, 374, 233, 266, 248].
In the literature, there are some works that proposed strategies to transform non-image
data into images. In [280], the authors proposed different approaches for creating images
from feature vectors, like creating images of bar graphs and gray images where blacker
pixels represent low distances and whiter pixels represent higher distance values.

There is also the DeepInsight approach [281] which is a very recent and promising
technique. It consists of mapping all the features into a 2D space using a dimensionality
reduction technique (e.g. t-SNE [214], kPCA). After the distribution is learned, the image
is cropped according to its convex hull (the smallest rectangle where all the data points fit).
The data points are represented according to the learned distribution and the differences
in color are given according to differences in feature values. This approach can be used
for different classification tasks where the datasets are not composed of images (e.g. text,
audio, signals).

Regarding signal processing, which consists of a unidimensional data stream, a
possible representation for analyzing this data is the use of recurrence matrices [357]. This
can be used to create images in order to analyze recurrent patterns between systems and
functions. This technique provides a wide range of applications.

The proposed DRNE relies on the idea of noise removal from images that represent
similarity information encoded in ranked lists, analogous to the approach performed in [246].
However, in DRNE, we train a denoising deep learning network, pairing the ranked list
image to its MAP (Mean Average Precision) to obtain a score related to its effectiveness.
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In this way, we exploit the denoising network in a query performance prediction task.

Among the most relevant state-of-the-art deep denoisers, we can cite the
DnCNN [409] (Denosing Convolutional Neural Network) which can learn noise patterns
from pairs of clean and noisy images. The deep denoisers generally have the advantage of
being capable of learning different noise patterns without requiring high execution times
for parameter adjusting or image processing, like in most of the statistical approaches (e.g.
BM3D [57]). There are also more recent approaches, like RDNN [417] (Residual Dense
Neural Network) which was originally proposed for image super-resolution but can also be
employed for denoising tasks. More recently, there is the DRUnet [408], a variant of the
UNet network employed for denoising. The cited residual networks, besides being more
effective, generally tend to be less efficient regards time and more memory-consuming
when compared to DnCNN.

For training denoisers, the lack of clean image data to be used as groundtruth may
be a challenge for certain applications such as medical imaging and remote sensing [158, 269,
223, 290]. In this scenario, different training strategies were proposed. The Noise2Noise [164]
and Noisier2Noise [223] approaches involve training with pairs of noisy images, where
the clean image can be predicted by learning common patterns in both images which
are supposed to be present in the clean image. There is also the Noise2Void [152] where
the learning process is done with only corrupted or noisy images, and the noisy pattern
is learned considering the given dataset. There are also other strategies like the one
based on Stein’s unbiased risk estimator (SURE) [290] which proposes an MSE (Mean
Squared Error) unsupervised estimation which can be used during training. Among the
self-supervised strategies, there are some that implement a CNN with a “blind spot” in
the receptive field of the network [158] and others that generate the groundtruth data
using the most promising statistical methods (e.g. BM3D [57]) in order to train a network
like DnCNN for example [290].

3.4 Semi-Supervised Classification and Graph Convolutional
Networks
This section presents an overview of the methods proposed for semi-supervised

classification, including recent approaches and their main ideas, with a particular focus on
image data and deep learning techniques.

Semi-supervised approaches perform training considering both labeled and
unlabeled data, which is advantageous in multiple scenarios where there is little labeled
data [85]. Some of them rely on the generation of pseudo-labels [338]. Among the
traditional methods for generating pseudo-labels, we can cite: Label Spreading [433]
and Pseudo-label [162]. There are also several supervised approaches that later presented
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semi-supervised variants that do not require the generation of pseudo-labels. For example:
Support Vector Machines [54] (SVM) and Optimum Path Forest [8] (OPF).

The taxonomy and categories of semi-supervised approaches vary in the
literature [85, 338]. Generally, there is some overlap among categories. In the following
subsections, we present them according to 4 research directions [338]: category
regularization; stronger augmentation; convergence with self-supervised learning; and
graph-based approaches.

• Consistency regularization

These methods rely on a concept known as category regularization. The central
idea is to force the approach to produce similar results for augmented versions of the
same unlabeled image. This is generally done by considering an additional term in the loss
function. The first method as far as it is known, to use this concept is called II-Model [157].
In II-Model, they use translation and random horizontal flips as augmentations for unlabeled
data, which is often called weak augmentation.

However, the main issue with II-Model is the unstable target, which compromises
the algorithm learning procedure. The Mean Teacher [309] approach was proposed with the
intent to address this issue. For this, they use two separate models: the Student network
and the Teacher network. While the Student is trained as usual, the Teacher does not use
back-propagation, and the weights are updated at each iteration using the weights from
the Student network.

• Stronger Augmentation

Data augmentation is of crucial importance for various semi-supervised
approaches [338]. Some strategies focus on improving the performance of classification by
employing different kinds of data augmentation techniques, in such a way that the inputs
given to the two branches of the neural model (or, to the two separate networks) are
sufficiently distinct. There are many methods that fit in this category, among them:
Virtual Adversarial Training and Entropy Minimisation [220] (VAT), Unsupervised
Data Augmentation [22] (UDA), MixMatch [28], FixMatch [289], ReMixMatch [27],
AlphaMatch [101]. Some of them also mix other ideas, such as the concept of consistency
regularization.

• Convergence with Self-Supervised Learning

Recently, self-supervision has been used by several semi-supervised methods.
Self-supervised approaches are a category of representation learning algorithms capable of
generating supervision signals without any human annotations. Most approaches in this
category use self-supervision to generate a set of pseudo-labels for training. Among the main
approaches in this category, we can cite: SimCLR [47], CoMatch [169], Self-Match [145].
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• Graph-based Approaches

A promising research direction is methods based on graphs. There are different
traditional graph-based approaches, both transductive and inductive ones [85]. The idea is
that the elements of the dataset can be represented as nodes and the edges can be used
to propagate or represent some kind of information between these nodes. Graph-based
methods are usually based on the manifold assumption [85]: the graphs, constructed based
on the local similarity between data points, provide a lower-dimensional representation of
the potentially high-dimensional input data. This makes these approaches advantageous
for scenarios with data of high dimensionality.

Recently, Graph Convolutional Networks (GCN), have been proposed for
semi-supervision. While CNNs are specially built to operate on regular (Euclidean)
structured data, the GNNs work on graphs with different numbers of vertexes and
unordered nodes (irregular on non-Euclidean structured data). There are many variants of
GCNs proposed: GCN-Net [146], GCN-SGC [363], GCN-GAT [344], GCN-APPNP [147],
GCN-ARMA [30]. Also, variants of GNNs: GNN-LDS [90], GNN-KNN-LDS [90].

The GCNs exploit feature vectors and graph-based neighborhood structures to learn
more effective representations [141, 135]. Due to these aspects, the GCNs have been recently
applied to graph-based data on semi-supervised learning tasks, achieving state-of-the-art
results. Several GCN variations have been proposed with relevant results [344, 363, 147, 30].
The use of GCN has many different applications. There are some recent works that exploit
graph learning for question and answer systems [228], including conversational image
search [227].

However, there are still not many approaches that use GCNs in image
classification [274, 343, 307]. Among the multiple research topics, there is finding the best
approach to model the graph and the features, which are provided as the input for these
networks and directly impact their performance and results.

3.5 Contrastive Learning
Traditional methods, such as the cross-entropy loss, focus primarily on achieving

correct classifications but may not always encourage the learning of robust, discriminative
features that generalize well to new, unseen data, among other issues (e.g., lack of
robustness to noisy labels [418, 296], possibility of poor margins [84, 199]). In light of
this, the contrastive losses, that aim to differentiate between similar and dissimilar data
points, are a promising solution [47, 143]. Many recent works have been using contrastive
loss for diverse applications: self-supervised facial expression recognition [286], blind video
restoration [218], self-supervised Vision Transformers [221], and many others [107].
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The Simultaneous Contrastive Learning of Representations [47] (SimCLR), a pioneer
in the field of self-supervised learning, was proposed for learning visual representations
by maximizing the agreement between differently augmented views of the same image
through a contrastive loss in the latent space. This method significantly contributed to
the field by facilitating the training of more robust and generalizable features without
relying on labeled data. Although SimCLR [47] offers promising results, it is not capable of
exploiting labeled data because the method is entirely unsupervised. Considering this issue,
the Supervised Contrastive Learning [143] (SupCon) was proposed to extend the principles
of SimCLR by incorporating labels for more discriminative learning in supervised tasks.

Both SimCLR [47] and SupCon [143] leverage pairwise comparisons for effective
representation learning. However, this strategy may be limited since it does not consider
contextual information [250]. Based on data augmentation, a recent work [10] proposed
to enhance document ranking on small datasets of different text document types (news,
finance, and science) through supervised contrastive learning. The approach involves
augmenting training data by utilizing portions of relevant documents from query-document
pairs. This augmented dataset is then used with a supervised contrastive learning objective,
differing from traditional pairwise training objectives which did not show improvement
with data augmentation.

There are different means of exploiting contextual similarity information in metric
learning applications, among them: employing graph approaches [392, 362, 208, 278,
136], data augmentation [10, 93], and using kNN information in parts of the model
framework [224, 136, 311, 93]. However, very few incorporate some type of contextual
similarity information directly into the contrastive loss formulation. Some examples are
the Nearest-Neighbor Contrastive Learning of Visual Representations [82] (NNCLR),
the Contextual Loss [183], and the kNN Contrastive Loss [441]. The NNCLR [82] is
unsupervised and based on SimCLR. It introduces a loss function that compares an
augmentation not with the original element, but with the closest neighbor of that element.
Besides its contributions, it strictly uses only a single closest neighbor in the comparison,
ignoring other elements present in the neighborhood. By contrast, the Contextual Loss [183]
improves similarity prediction by counting the number of neighbors two samples have in
common. Conversely, the kNN Contrastive Loss [441] computes the average contrastive
loss for an element and its k neighbors and was proposed and designed for classification in
dialogue systems, specifically considering out-of-domain (OOD) samples, as opposed to
image classification.
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4 Experimental Protocol

This chapter outlines the experimental protocol considered for assessing the
effectiveness of the seven approaches proposed in this work. Section 4.1 defines the
effectiveness measures used to assess the results for each task. Section 4.2 presents the
datasets and descriptors used for general-purpose image retrieval, classification, and person
Re-ID tasks.

4.1 Effectiveness Measures
This section presents the effectiveness measures employed for evaluating the three

tasks considered in this work: image retrieval (Subsection 4.1.1), query performance
prediction (Subsection 4.1.2), and image classification (Subsection 4.1.3). Each task is
assessed using different measures.

In general-purpose scenarios, the measures are computed for all queries (in the
context of retrieval and query performance prediction) or every instance in the testing
set (in the context of classification), and then the average is calculated. For person Re-ID,
each dataset has a particular query set. The measures widely used in the literature were
selected for most evaluations, but some experiments followed the specific protocol defined
according to the benchmark.

4.1.1 Retrieval

Effectiveness measures are essential for evaluating the quality of retrieval results [15].
In this subsection, we present the measures employed for evaluating retrieval tasks in this
study. All of them consider ranked lists as input. The results of most measures are defined
in the [0, 1] range, where higher values represent better results.

• Precision

Precision can be understood as the fraction of relevant instances among the retrieved
instances, which is calculated as:

Pk = c

k
, (4.1)

where k is the number of retrieved items and c is the number of correct items among the
ones retrieved. In the text, P@k denotes the precision at position k.



Chapter 4. Experimental Protocol 80

• Recall

Unlike precision, recall is the fraction of relevant instances retrieved over the total
number of relevant instances. Please note that the notation R used here does not refer to
a ranker, but rather to the recall measure which is defined as:

Rk = c

nr

, (4.2)

where k is the number of retrieved items, c is the number of correct items among the
retrieved items, and nr is the number of relevant items. The number of relevant items is
the maximum number of items that can be correctly identified in a given circumstance.
Note that if k is equal to the size of the dataset, the result is always 1. In the text, R@k
denotes the recall at position k.

• Mean Average Precision (MAP)

The MAP is the most common measure used to assess the effectiveness of ranked
lists in retrieval tasks. For each of the ranked lists in the set T , the average precision AP
(Average Precision) can be computed. Precision and recall are calculated at each position
in the ranked list, generating a curve that describes the function P (R), in which precision
is given as a function of recall. For illustrative purposes, Figure 4.1 shows an example of a
precision × recall curve where the area formed by the curve corresponds to the AP.
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Figure 4.1 – Example of precision × recall curve.

More formally, let q be a query and nr be the number of relevant items in the
dataset for the given query q. Let ⟨ri | i = 1, 2, .., d⟩ be a ranked relevance vector of depth
d, where ri indicates if the ith item is either 0 (not relevant, different from query class) or
1 (relevant, same class as the query), the AP is defined as follows:
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APq = 1
nr

d∑
i=1

ri

i

i∑
j=1

rj

 . (4.3)

MAP is obtained by taking the average of the average precision (AP) of each of the
ranked lists in the set T . Let Q be the number of queries, the MAP is defined as follows:

MAP =
∑Q

l=1 AP (ql)
Q

. (4.4)

For most cases, all images of the datasets are considered as queries when computing
the MAP, with some exceptions: Holidays [127] dataset and Re-ID [429, 422, 428] datasets
have a specific set of queries.

• Cumulative Matching Characteristics (CMC)

The CMC curves are commonly used to assess the effectiveness of person
re-identification methods. Given the ranked list of a query q, a score Iq(k) for position k is
calculated using the following criteria:

Iq(k) =

1 if at least one image from the same class is in the top-k positions,

0 otherwise.
(4.5)

Thus, Iq(k) indicates the presence (1) or absence (0) of any correct match within
the top k positions. Each position k on the CMC curve is given by the average of the Iq(k)
scores calculated for each query.

The value k on a Cumulative Match Characteristic (CMC) curve is denoted as
Rk. It represents the likelihood that at least one element from the same class appears
within the first k positions of ranked lists. The R1 is one of the most commonly used for
Re-ID and corresponds to the first value of the CMC curve. It indicates the number of
ranked lists where the image of the same individual appears in the top position following
the query image, being equivalent to Precision@1 in this case. Despite the similarity in
notation, we should not confuse R1, from the CMC curve, with recall, which is denoted as
R@1.

It is important to note that protocols may vary; for instance, certain studies suggest
that images of the same class taken with the same camera should not be considered
as belonging to the same class [176, 422]. Additionally, variations exist in multi-query
scenarios [422, 428]. This dissertation specifically evaluates Re-ID datasets in single-query,
multi-shot scenarios.
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• NS-Score

Other specific measures may be used depending on the dataset. In this work, the
NS-Score, or simply NS, is considered for the UKBench [230] dataset. The authors of the
dataset proposed this measure, and it is extensively employed in the literature for this
dataset, which counts the number of relevant images in the top 4 positions. Since 4 is
the number of relevant images per class, a score equal to 4 is a perfect score. Of all the
retrieval effectiveness measures, this is the only one that has a different range, which is
[0, 4].

4.1.2 Query Performance Prediction

Query performance prediction (QPP), which is the task of estimating the
effectiveness of a ranked list can be understood as a subtopic of image retrieval. To
evaluate the quality of a QPP approach, we measure the Pearson correlation between the
predicted scores and one of the measures that use labels (i.e., Precision, Recall, or MAP).
The Pearson correlation coefficient measures the linear correlation between two variables
X and Y . It is mathematically defined as:

r =
∑n

i=1(Xi − X̄)(Yi − Ȳ )√∑n
i=1(Xi − X̄)2 ∑n

i=1(Yi − Ȳ )2
. (4.6)

Where:

• r is the Pearson correlation coefficient.

• Xi and Yi are the individual sample points indexed with i.

• X̄ and Ȳ are the means of the X and Y datasets respectively.

• n is the number of data points.

This formula quantifies the degree to which a relationship between the two variables
can be described by a line. The value of r ranges from -1 to +1, where +1 indicates perfect
positive correlation, -1 indicates perfect negative correlation, and 0 indicates no linear
correlation. In this dissertation, Xi is the value predicted by a QPP approach and Yi is the
real value of an effectiveness measure (e.g., MAP or Precision). For example, the better
the prediction correlates with the MAP score, the more effective the QPP task is.

4.1.3 Classification

This subsection presents all the classification measures used in this work. They are
described using the following concepts:
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• True positives (TP): number of correct predictions where instances are accurately
identified as belonging to a specific class.

• True negatives (TN): number of correct predictions where instances are accurately
identified as not belonging to a specific class.

• False positives (FP): number of incorrect predictions where instances are wrongly
identified as belonging to a specific class.

• False negatives (FN): number of incorrect predictions where instances are wrongly
identified as not belonging to a specific class.

Since the considered datasets are multi-class, each of these is calculated separately
for every class and aggregated to evaluate the overall effectiveness of the classifier.

• Accuracy (Acc)

Accuracy is defined as the ratio of correctly predicted observations to the total
observations. It can be expressed as:

Accuracy = TP + TN
TP + TN + FP + FN . (4.7)

• F-Measure (F1 Score)

F-Measure is the harmonic mean of precision and recall:

F1-Score = 2 · Precision · Recall
Precision + Recall (4.8)

For retrieval, we defined precision and recall considering the ranked list definition.
To facilitate the understanding of the reader, these measures can also be equivalently
defined as:

Precision = TP
TP + FP , Recall = TP

TP + FN . (4.9)

In this work, we considered the macro-average F-Measure. It consists in computing
a separate F-Measure for each class and then averaging these scores to get an overall
measure. This does not take class imbalance into account.

4.2 Datasets and Descriptors
A wide variety of datasets was considered, totaling 17: 13 of general-purpose and 4

of Re-ID. Since general-purpose cases are broader scenarios, a wider number of datasets
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was employed. For Re-ID, there is often a limited number of datasets available. In this work,
the most widespread ones were considered. All datasets are multi-class and single-label,
featuring various classes with each image uniquely belonging to only one class.

4.2.1 General-Purpose

Table 4.1 shows all the 13 general-purpose datasets used in the experiments and their
information. For each dataset, the evaluation measures for query performance prediction,
retrieval, and classification are included. Notice that some datasets were used exclusively
for retrieval, some exclusively for classification, and some for both.

The descriptors used for the general-purpose scenarios and their respective MAP
values for each dataset are detailed in Table 4.2. Datasets that were exclusively used for
classification were not included. A wide range of descriptors were used (global, local, and
deep learning). The Euclidean distance was employed in all the cases to obtain the ranked
lists from the extracted features. All the CNNs were trained in the ImageNet dataset with
a PyTorch implementation 2 and used in the target dataset to extract features. The same
is valid for the Vision Transformers, but considering other public implementations 3. The
MAP computation considered all the images as queries, except for Holidays where the
protocol specifies a particular set of queries [127]. Notice that the MAP values can also be
found in the respective chapters where the experimental evaluations of the methods were
conducted.

Table 4.1 – General-purpose datasets used in the experimental evaluation.

Evaluation Measures
Dataset Num. of Dataset QPP Image Image

Classes Size Retrieval Classification
ORL Faces [116] 40 400 —– Recall@15 —–
Flowers [229] 17 1,360 Pearson(MAP) MAP Acc., F-Measure
MPEG-7 [161] 70 1,400 Pearson(MAP) MAP, Recall@40 —–
Holidays [127] 500 1,491 —– MAP —–
Brodatz [35] 16 1,776 Pearson(MAP) MAP —–
Corel5k [194] 50 5,000 —– MAP Acc., F-Measure
UKBench [230] 2,550 10,200 —– NS, MAP —–
CUB200 [346] 200 11,788 —– —– Acc., F-Measure
Dogs [142] 120 20,580 —– MAP —–
CIFAR-100 [150] 100 60,000 —– —– Acc.
MiniImageNet [345] 100 60,000 —– —– Acc.
ALOI [98] 1,000 72,000 —– MAP —–
Food101 [33] 101 101,000 —– —– Acc.

2 CNNs: https://github.com/Cadene/pretrained-models.pytorch
3 VIT-B16: https://github.com/faustomorales/vit-keras

T2T-VIT: https://github.com/yitu-opensource/T2T-ViT
SWIN-TF: https://github.com/rishigami/Swin-Transformer-TF

https://github.com/Cadene/pretrained-models.pytorch
https://github.com/faustomorales/vit-keras
https://github.com/yitu-opensource/T2T-ViT
https://github.com/rishigami/Swin-Transformer-TF


Chapter 4. Experimental Protocol 85

Table 4.2 – Descriptors used for general-purpose datasets.

Category Type Descriptor MAP (%)

Global
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Color

ACC [119] —– —– 18.99 23.44 87.72 64.29 —– —–
SPACC [119, 209] —– —– 19.20 23.86 85.30 62.37 —– —–
CLD [53] —– —– 18.54 17.86 59.58 37.59 —– —–
SCD [53] —– —– 10.25 14.56 83.04 54.26 —– —–
SCH [53] —– —– 13.43 17.56 48.98 24.19 —– —–
FOH [337, 209] —– —– 11.42 15.87 57.05 25.77 —– —–
BIC [295] —– —– 25.56 —– 80.46 —– —– —–

Shape

PHOG [59, 209] —– —– 14.74 15.80 41.60 31.15 —– —–
AIR [103] 89.39 —– —– —– —– —– —– —–
ASC [191] 85.28 —– —– —– —– —– —– —–
IDSC [190] 81.70 —– —– —– —– —– —– —–
CFD [244] 80.71 —– —– —– —– —– —– —–
BAS [13] 71.42 —– —– —– —– —– —– —–
SS [317] 37.82 —– —– —– —– —– —– —–

Texture LBP [231] —– 48.40 10.34 14.83 47.19 28.82 —– —–
SPLBP [231, 209] —– —– 10.92 15.41 52.14 33.09 —– —–
EHD [215] —– —– 12.46 16.80 44.10 25.83 —– —–
CCOM [148] —– 57.57 —– —– —– —– —– —–
LAS [308] —– 75.15 —– —– —– —– —– —–

Color and
Texture

CEDD [40] —– —– 20.48 23.00 70.45 51.59 —– —–
SPCEDD [40, 209] —– —– 21.94 28.70 74.98 56.09 —– —–
FCTH [41] —– —– 20.56 23.93 73.70 48.44 —– —–
SPFCTH [41, 209] —– —– 21.73 26.43 77.78 55.43 —– —–
JCD [401] —– —– 20.89 24.73 74.85 52.84 —– —–
SPJCD [401, 209] —– —– 22.56 28.02 76.67 56.58 —– —–
COMO [342] —– —– 21.83 21.05 79.77 49.66 —– —–

Holistic GIST [232] —– —– 9.82 15.98 45.44 21.59 —– —–

Local Bag of
Words

SIFT [205] —– —– 28.47 12.60 74.52 54.63 —– —–
VOC [356] —– —– —– —– 91.14 —– —– —–

Deep
Learning CNN

CNN-SENet [117] —– —– 43.16 56.92 92.15 71.60 —– 78.41
CNN-ResNet [110] —– —– 51.83 64.81 94.54 74.88 63.73 81.97
CNN-FBResNet [110] —– —– 52.56 64.21 93.88 72.65 —– —–
CNN-ResNeXt [372] —– —– 51.91 62.39 93.67 74.16 —– —–
CNN-DPNet [51] —– —– 50.93 65.15 90.47 70.59 —– 79.09
CNN-VGGNet [198] —– —– 39.05 47.85 87.99 67.96 —– —–
CNN-BnVGGNet [198] —– —– 41.87 52.72 89.24 67.60 —– —–
CNN-InceptionV4 [302] —– —– 42.35 58.66 86.82 63.84 —– —–
CNN-InceptionResNet [302] —– —– 42.20 61.17 87.23 62.87 —– —–
CNN-BnInception [122] —– —– 46.58 46.60 91.84 70.06 —– —–
CNN-NASnet-Large [445] —– —– 40.74 53.55 86.90 64.48 —– —–
CNN-AlexNet [151] —– —– 46.04 37.67 85.57 65.25 —– —–
CNN-Xception [52] —– —– 47.31 54.44 90.83 64.94 —– 76.07

Hybrid
Network CNN-OLDFP [222] —– —– —– —– 97.74 88.46 —– —–

Transformers
VIT-B16 [77] —– —– 87.12 74.19 —– —– 79.83 79.40
T2T-VT24T [399] —– —– 38.03 58.97 —– —– —– 76.90
SWIN-TF [202] —– —– —– 73.92 97.93 85.52 45.54 —–

4.2.2 Person Re-Identification

In this work, we consider a total of 4 Re-ID datasets, which are detailed in
Table 4.3. For the CUHK03 [176] dataset, the detected version was considered, which uses
the bounding boxes extracted with the DPM [173] detector and follows the experimental
protocol proposed by [429]. For the Market1501 [422] and DukeMTMC [428] datasets, the
protocol adopted is the one proposed by the authors of the datasets. To keep it brief, the
DukeMTMC and Market1501 datasets are often referred to simply as Duke and Market.
For the dataset Airport [137], a different protocol was adopted, where all the images
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(training, test, and gallery) were treated as query images and gallery simultaneously. In all
cases, the MAP was reported with R1 for comparison. The measure R1 corresponds to
the first value of the CMC curve, which indicates the number of ranked lists that have at
least one image corresponding to the same class in the first position after the query image.
All evaluations follow a single-query protocol, where each query considers only one image
at a time. Additionally, all datasets are multi-shot, containing multiple images of each
individual.

Table 4.3 – Re-ID datasets used the experimental evaluation.

Dataset N. Classes Size Train Galery Test Cam. Detector
CUHK03 [176, 429] 1,467 14,097 7,365 5,332 1,400 2 DPM
Market1501 [422] 1,501 32,217 12,936 15,913 3,368 6 DPM
DukeMTMC [428] 1,812 36,411 16,522 17,661 2,228 8 Manual
Airport [137] 9,651 39,902 — — — 6 ACF

Table 4.4 presents the descriptors employed for the Re-ID datasets in the
experimental evaluation. The number of descriptors per dataset varies from 21 to 28,
consisting of different types (i.e., traditional, bag of words, deep learning). For most of the
extractions, the Euclidean distance was considered. The only exception is the descriptor
OSNET-AIN, where the cosine distance was employed, as done by the authors of the
model [436]. The process of obtaining the descriptors is entirely unsupervised. We do not
consider the labels of the dataset being evaluated. For the non-deep descriptors (GBICOV,
LOMO, GOG, WHOS, ELF, HLBP, SDC e BOVW), the Principal Component Analysis
(PCA) was employed to reduce the features vectors to 100 positions before computing the
ranked lists, as done in the literature [137].

The convolutional neural networks (CNN) were trained on different datasets,
which are indicated by the abbreviations in parentheses. Most were pre-trained on the
ImageNet [70] dataset, except HACNN which was trained from scratch on the Re-ID
datasets. The MSMT17 [359] was utilized to train most of the models, since it’s a large
dataset (126,441 images of 4,101 people in 15 cameras), facilitating generalization. The
majority of the networks were trained considering only the specified training subset,
however, some used all the images (train, gallery, and queries) of the MSMT17 dataset:
RESNET50, OSNET, OSNET-IBN e OSNET-AIN. To keep the protocol completely
unsupervised, we ensured that none of the networks were trained on the target dataset.
The features were extracted with the pre-trained weights 4 available on Torchreid [435].

Throughout the text when a Re-ID descriptor is mentioned without specifying the
database on which it was trained, it refers to training on MSMT17 (MT). This standard
was adopted to facilitate reading.
4 Torchreid: https://kaiyangzhou.github.io/deep-person-reid/MODEL_ZOO.html

https://kaiyangzhou.github.io/deep-person-reid/MODEL_ZOO.html
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Table 4.4 – Values of MAP (%) and R-01 (%) for each Re-ID descriptor on each dataset. The
dataset used to train the model is described between parentheses (M = Market, D =
DukeMTMC, MT = MSMT17).

Datasets
CUHK03 Market1501 DukeMTMC Airport

Descriptors R1 MAP R1 MAP R1 MAP MAP
GBICOV [213] 0.63 0.82 10.21 3.27 — — —
LOMO [184] 0.79 0.89 19.15 6.46 6.60 2.82 35.35
GOG [217] 0.49 0.77 21.56 7.55 10.82 4.40 34.11
WHOS [192] 0.39 0.56 20.01 6.23 7.50 2.65 34.75
ELF [106] 0.34 0.52 12.02 3.85 2.42 0.83 31.17
HLBP [375] 0.32 0.43 7.07 2.18 0.76 0.54 32.68
SDC [419] 0.18 0.34 11.02 3.78 2.96 1.18 31.57
BOVW-350 [422] 1.69 1.80 33.11 13.34 14.41 6.71 32.73
BOVW-500 [422] 1.56 1.81 32.33 12.94 14.14 6.68 33.09
MobileNetV2 (M) [275] 4.39 4.34 — — 24.01 12.34 35.62
MobileNetV2 (D) [275] 4.30 4.30 37.80 15.63 — — 37.23
MobileNetV2 (MT) [275] 8.87 8.51 37.86 16.56 42.59 23.79 38.84
RESNET50 (M) [110] 3.84 3.90 — — 25.67 13.62 38.01
RESNET50 (D) [110] 5.84 5.85 42.64 18.39 — — 40.25
RESNET50 (MT) [110] 13.68 13.08 46.59 22.82 52.29 32.00 41.95
HACNN (M) [177] 5.51 5.69 — — 23.79 13.13 36.40
HACNN (D) [177] 3.11 3.28 43.74 18.87 — — 38.85
HACNN (MT) [177] 9.71 9.68 49.23 23.30 42.19 25.57 42.94
MLFN (M) [39] 4.91 5.19 — — 30.39 16.96 38.67
MLFN (D) [39] 4.72 4.74 45.55 20.26 — — 40.15
MLFN (MT) [39] 10.58 10.19 46.59 21.98 48.70 28.98 41.17
OSNET (MT) [437] 20.83 19.84 65.94 37.36 65.98 45.20 45.47
OSNET-IBN (M) [436] 10.48 10.22 — — 48.52 26.59 40.96
OSNET-IBN (D) [436] 8.01 7.85 57.48 26.01 — — 40.65
OSNET-IBN (MT) [436] 21.70 20.78 66.45 37.13 67.41 45.52 45.37
OSNET-AIN (M) [436] 12.14 11.67 — — 52.42 30.35 42.05
OSNET-AIN (D) [436] 9.54 9.24 61.10 30.64 — — 42.79
OSNET-AIN (MT) [436] 28.49 27.00 69.95 43.30 71.14 52.69 52.26
TransReID (MT) [111] — — — 43.52 — 55.42 —

4.2.3 Summary and Discussion

Due to the large amount of information associated with the experimental evaluation,
which includes a diverse range of datasets, methods, and tasks, a table has been created to
help easily understand which dataset is used with each method. Table 4.5 contains bullets
to indicate which methods were applied to each dataset. The methods were divided into 3
categories: query performance prediction (QPP), retrieval, and classification. The colors
are used to distinguish between the supervision types. Notice that the methods RFE and
Manifold-GCN appear twice since they were used for both classification and retrieval. This
is possible because these methods produce embeddings that can be used for different tasks,
which makes them flexible.
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Besides the high variety of datasets used in each case, please notice that, except for
CCL, all the methods evaluate their results on Market1501 and DukeMTMC, which are
the most commonly used benchmarks for person Re-ID. Since Re-ID is a retrieval task,
these datasets are not employed when classification is performed.

For the query performance prediction approaches, a very similar set of datasets
was considered to make the comparisons feasible. The retrieval scenario considers a great
variety of general-purpose datasets, with Holidays and UKBench being the ones used for
comparison with the state-of-the-art. HRSF is an exception because it has the objective
and is exclusively evaluated on Re-ID. For classification, the CCL, due to the nature of
supervised metric learning, which requires big datasets and more examples for training,
larger datasets with hundreds of images per class were considered.

Table 4.5 – Datasets used in the evaluation of each of the proposed methods, categorized by task
and type of supervision. The following colors are considered: blue for unsupervised,
orange for semi-supervised, and red for supervised.

Supervision Type Unsupervised Semi-supervised Supervised
Task Type QPP Retrieval Classification

Category Dataset Size Classes D
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General-Purpose

ORL Faces [116] 400 40 •
Flowers [229] 1,360 17 • • • •
MPEG-7 [161] 1,400 70 • • •
Holidays [127] 1,491 500 • •
Brodatz [35] 1,776 16 • • •
Corel5k [194] 5,000 50 • • • •
UKBench [230] 10,200 2,550 • •
CUB200 [346] 11,788 200 •
Dogs [142] 20,580 120 •
CIFAR-100 [150] 60,000 100 •
MiniImageNet [345] 60,000 100 •
ALOI [98] 72,000 1,000 •
Food101 [33] 101,000 101 •

Person Re-ID

CUHK03 [176, 429] 14,097 1,467 • • •
Market1501 [422] 32,217 1,501 • • • • • •
DukeMTMC [428] 36,411 1,812 • • • • • •
Airport [137] 39,902 9,651 •
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5 Self-Supervised Contextual Effectiveness
Estimation Measures

The possibility of estimating the effectiveness of a set of ranked lists computed
by a given visual feature without any labeled data is a very challenging but relevant
approach [266, 248]. For image retrieval, some measures addressed the problem in
unsupervised scenarios, such as the Authority Score [243] and Reciprocal Score [248].
Despite the significant results, such measures are mainly grounded on graph-based
formulations of ranking information and do not exploit deep learning models or regression
approaches. In contrast, most query performance prediction methods based on machine
learning are supervised [61, 233].

In this chapter, two self-supervised effectiveness measures are presented: the Deep
Rank Noise Estimator (DRNE) [330] and the Regression for Query Performance Prediction
Framework (RQPPF) [336]. They innovate by proposing completely self-supervised
training based on synthetic data using different contextual representations to estimate
the effectiveness of the ranked lists. Specifically, DRNE utilizes a denoising convolutional
neural network (CNN) on contextual images derived from ranked lists, whereas RQPPF
employs regression analysis on contextual meta-features.

The chapter is organized as follows: Section 5.1 outlines the methodology for
generating synthetic data, a technique employed by both measures. Section 5.2 details
the DRNE approach, while Section 5.3 introduces the RQPPF method. Additionally,
Section 5.4 covers the experimental evaluation of these approaches, including visual results.

5.1 Synthetic Data Generation
In most scenarios, neural networks, and regression models rely on labeled data,

which is not always easily available. To propose an entirely unsupervised training setting,
we have developed an algorithm that generates synthetic ranked lists. The objective of
synthetically generated ranked lists is to emulate the retrieval process, which can include
relevant and non-relevant elements. The proposed approach considers a set of virtual
classes to define the notion of relevance. In this way, it becomes possible to assess the
effectiveness of synthetic ranked lists, which can be used for training deep learning and
regression models.

Our synthetic scenarios rely on the generation of a confusion matrix of probabilities
M . It is a squared C × C matrix where C is the number of virtual classes, present in
the synthetic scenario. Being kv the size of each virtual class, C = N/kv, where N is the
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dataset size. The matrix is required to be symmetrical with all the values in the range [0, 1],
and all the rows and columns are also required to sum to 1, to keep the consistency with
the idea of probabilities. The position (i, j) in this matrix corresponds to the probability of
the elements of class i being mistaken by elements of class j. Following this reasoning, an
element in the diagonal (position (i, j), where i = j) corresponds to the probability of an
element being correctly attributed to its class. From this perspective, imposing restrictions
on the values in the diagonal can increase or decrease the effectiveness of the ranked lists
being generated. Figure 5.1 illustrates the similarities among classes, where the diagonal
elements are highlighted in blue.

[     ]
...

...

0.72 0.01 0.02 0.08...
0.01 0.61 0.03 0.01

0.02
0.08

...
...

... ... ... ...
0.03
0.01

...

...
0.82 0.01

0.530.01

Figure 5.1 – Illustration of a confusion matrix of probabilities between classes.

For a more detailed discussion of this approach, Algorithm 1 presents the method
for generating a synthetic confusion matrix of probabilities. The algorithm receives the
dataset size N , number of virtual classes C, and diagonal restriction values minDiag and
maxDiag and produces a matrix M where each element represents the probability of one
class being confused with another. The algorithm is divided into the following steps:

• Initialization: The algorithm begins by initializing a square matrix M of size C × C
with zeros (line 2). This matrix is populated with probabilities in subsequent steps.

• Diagonal assignment: Next, the algorithm assigns random values to the diagonal
elements of the matrix within the specified interval [minDiag,maxDiag] (lines
5-7). This ensures that the diagonal values, representing the probability of correctly
classifying each class, are within the defined range.

• Off-diagonal elements calculation: The algorithm then calculates the off-diagonal
elements (lines 10-18). For each row i, it calculates the remaining probability mass
after accounting for the diagonal value 1−M [i, i] (line 11). This remaining probability
mass is distributed uniformly among the off-diagonal elements in the row using a
uniform random distribution (line 12). The function randomUniformDistribution

generates N − 1 values whose sum is lineSum. Consequently, the range of each
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off-diagonal element is from 0 to lineSum, ensuring that the resulting sum of each
row is equal to 1.

• Matrix symmetrization: To make the confusion matrix symmetric (lines 21-27), the
algorithm averages each pair of off-diagonal elements M [i, j] and M [j, i] and assigns
this average value to both elements. This step ensures that the confusion between
any two classes is bidirectional and equal.

• Normalization: Finally, the algorithm normalizes the matrixM (line 30) to ensure that
the sum of the elements in each row is 1, preserving the probabilistic interpretation
of the matrix.

Algorithm 1: Generate synthetic confusion matrix of probabilities
Require: Dataset size N , number of virtual classes C, and diagonal restriction values

minDiag and maxDiag.
Ensure: Confusion matrix of probabilities M .

1: ▷ Initialize a square matrix with zeros
2: M ← initMatrix(C, C)
3:
4: ▷ Assign random values to the diagonal within the given interval
5: for i← 1 to N do
6: M [i, i]← random(minDiag, maxDiag)
7: end for
8:
9: ▷ Compute the off-diagonal elements

10: for i← 1 to N do
11: lineSum← 1−M [i, i]
12: values← randomUniformDistribution(N − 1, lineSum)
13: for j ← 1 to N do
14: if i ̸= j do
15: M [i, j]← values[j]
16: end if
17: end for
18: end for
19:
20: ▷ Make the matrix symmetric
21: for i← 1 to N do
22: for j ← i + 1 to N
23: avgV alue← (M [i, j] + M [j, i])/2
24: M [i, j]← avgV alue
25: M [j, i]← avgV alue
26: end for
27: end for
28:
29: ▷ Normalize the matrix
30: M ← normalize(M)
31:
32: return M
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Using the M matrix, a set of synthetic ranked lists can be generated utilizing this
matrix to determine the probability of confusion between classes. However, since incorrect
elements tend to be more random than the correct ones, we also generate a symmetrical
confusion matrix Mc to attribute probabilities for randomly selecting the elements that
belong to the same class. For each virtual class in the synthetic dataset, a matrix Mc is
computed considering the Algorithm 1. The only distinction is that, instead of being a
C × C matrix, it is a kv × kv matrix.

In this scenario, Algorithm 2 presents a method for computing a synthetic ranked
list τq for an element of index q. The algorithm receives as input the index q, size L
of the ranked list, number of virtual classes C, size kv of classes, a confusion matrix of
probabilities between classes M , and a confusion matrix of probabilities between the
elements in the same class Mc. The output is a synthetic ranked list τq. The algorithm
begins by initializing a synthetic ranked list of size L full of zeros (line 2). The list
addedElementsForClass is employed to register the number of elements added in the
ranked list for each class C during the iterations, which is initialized with zeros in line
5. The role of addedElementsForClass is to prevent adding elements for classes with no
remaining elements, i.e., in case all of them were already added in τq. Line 8 gets the class
of the element q, while Line 9 makes a copy of the corresponding row of matrix M that
contains the probability between its class and other classes. The next part iterates for
adding elements to τq (lines 12-35), involving the following steps:

• Random class selection: A random class is selected based on the probabilities obtained
from the matrix M (line 14). A random value is generated in the range [0, 1], and
the function getRandomClass compares this value against the cumulative sum of
the probabilities in the corresponding row M [classQ]. The class is selected where
the random value lies within the cumulative probability range. This ensures that
classes with higher probabilities have a higher chance of being selected, reflecting
the distribution specified by the matrix M .

• Element selection: Since incorrect elements tend to be more random than correct
ones, the process of selecting elements of the same and different classes is performed
separately (lines 17-23).

– Different class: The function getRandomElementDiffClass (line 19) returns
the index of a random element of the randomClass ensuring that this element is
not already present in τq. Each element within the class has an equal probability
of being chosen.

– Same class: For this step, the matrix Mc is used, which is similar to matrix
M but instead of containing the probabilities of selection between classes, it
contains the probability of selection between elements of the same class, which in
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this case is the class of element q. The function getRandomElementSameClass
(line 22) returns an element belonging to classQ, ensuring that this element is
not already present in τq.

• Updating the ranked list: The selected element is added to the synthetic ranked list
(line 26).

• Tracking added elements: The algorithm updates the count of elements added for the
chosen class (line 28). If the number of elements added for a class reaches the size of
the virtual class kv (line 30), this means that all of the elements of that class have
already been added. The algorithm then updates the distribution of probabilities
between classes (line 31) to prevent selecting that class again and resets the counter
(line 33) for that class to avoid entering this if statement in the next iteration.

A set of synthetic ranked lists T = {τ1, τ2, . . . , τN}, can be generated by executing
this algorithm from q = 1 to q = N . This method of computing synthetic ranked lists is
employed to generate data to train the proposed approaches presented in this chapter.
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Algorithm 2: Generate synthetic ranked list
Require: Image index q,

Confusion matrix of probabilities M ,
Confusion matrix of probabilities for elements in the same class Mc,
Size of ranked list L,
Number of virtual classes C,
Size of virtual classes kv.

Ensure: A synthetic ranked list τq.
1: ▷ Initialize synthetic ranked list
2: τq ← emptyList(L)
3:
4: ▷ Initialize list to record the number of elements added for each class
5: addedElementsForClass← emptyList(C)
6:
7: ▷ Get class of element q and the corresponding row of matrix M
8: classQ← getClass(q)
9: classesProbDist← copyRow(M [classQ])

10:
11: ▷ Iterate to fill the synthetic ranked list up to position L
12: for i← 1 to L do
13: ▷ Select a random class based on the probabilities obtained from matrix M
14: randomClass← getRandomClass(classesProbDist)
15:
16: ▷ Randomly select an element from the randomClass
17: if classQ ̸= randomClass do
18: ▷ Randomly select the index of an element from a different class
19: element← getRandomElementDiffClass(randomClass, τq)
20: else
21: ▷ Randomly select the index of an element from the same class
22: element← getRandomElementSameClass(Mc, τq)
23: end if
24:
25: ▷ Add element to the synthetic ranked list
26: τq[i]← element
27: ▷ Keep a record of the number of elements added for each class
28: incrementByOne(addedElementsForClass[randomClass])
29: ▷ Update matrix to prevent selecting class with no remaining elements
30: if addedElementsForClass[randomClass] = kv do
31: updateProbDist(classesProbDist, randomClass)
32: ▷ Prevent entering this if statement again for the same class in the next iteration
33: addedElementsForClass[randomClass]← 0
34: end if
35: end for
36:
37: return τq
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5.2 Deep Rank Noise Estimator (DRNE)
In this section, we propose a new method to estimate the effectiveness of ranked

lists in a self-supervised fashion, the Deep Rank Noise Estimator (DRNE). We innovate
by proposing a new model architecture based on a well-known denoiser, which has results
comparable to the state-of-the-art, the DnCNN [409] (Denoiser CNN). To keep the entire
workflow unsupervised, we trained the model with synthetic data. In order to create such
data, we emulate the behavior of real visual features with different degrees of effectiveness.
Based on the generated data, the ranked lists are converted to images according to a
strategy inspired by [246] and used to train the network, which interprets the incorrectness
of a ranked list as noise. When the same representation is generated for real visual features,
the network is able to estimate the noise and therefore the rank effectiveness.

To the best of our knowledge, this work is the first method which deals with the
challenging task of unsupervised effectiveness estimation by using a denoising deep learning
model. In this way, many contributions and innovations are proposed as part of the DRNE
and can be highlighted, among them: (i) ranked lists are represented as contextual images;
(ii) the noise of the contextual images is interpreted as the incorrectness of the ranked
lists; (iii) it generates synthetic data in order to train denoising networks in a totally
unsupervised manner.

Our proposed strategy aims at computing effectiveness estimation measures for
ranked lists without requiring any labeled data, in a self-supervised fashion. We name
our method as Deep Rank Noise Estimator (DRNE) [330]. The workflow is presented in
Figure 5.2. This approach can be summarized into three main steps:

1. Computing Synthetic Data: They are used to simulate real scenarios for training
the CNN, but without using any real label or groundtruth.

2. Ranked Lists as Images: A strategy to represent ranked lists as images, since they
are numerical data, they need to be converted to images to be provided as input to
the CNN. Our approach for this step is based on [246].

3. Effectiveness Estimation CNN: The DnCNN [409] architecture was modified to
be used as an effectiveness estimator for ranked lists, based on their “noise” level
present in the images.

In addition to Step 1, which involves generating synthetic data and is discussed in
Section 5.1, the subsequent steps are outlined in the following subsections.
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Figure 5.2 – Diagram illustrating the main stages of the DRNE.

5.2.1 Computing Contextual Images from Ranked Lists

The ranked lists consist of numerical data, where each value corresponds to the
index of the image being ranked. In this work, we propose a model for transforming a
ranked list into image data, based on what was proposed in [246].

Given a pair of ranked lists τi and τj, a grayscale image can be modeled such that
the pixel (px, py) is defined as the mean of the positions that the elements occur in both
lists:

pixel(px, py) = (τx(y) + τy(x))/2, (5.1)

where px = τi(x) and py = τj(y).

For DRNE, we always consider images of the same ranked list to the same ranked
list (such that τi = τj), which produces symmetrical images. The positions with higher
similarity are represented by darker pixels and the ones with lower similarity by brighter
ones. Regarding the image size, it is directly related to the value of L, which is the size of
the ranked lists. We considered L = 200 to obtain 200x200 images in all the cases. The use
of the same size of image for all the datasets shows the scalability potential of our method.

To illustrate this process, Figure 5.3 depicts an image generated from a hypothetical
set of ranked lists. Specifically, this example focuses on the image calculated for the element
at index 0, denoted as obj0. It is important to note that the image is symmetric along the
diagonal, which is black. The pixels outlined in red are those computed in this example.
Due to the symmetry, two pixels are colored red; computing one automatically computes
the other. The pixel at position (0, 1) in the generated image corresponds to elements 0
and 4 (obj0 and obj4), which occupy positions 0 and 1 in the ranked list of obj0 (referred
to as τobj0). The pixel value is calculated as the average of the positions that the elements
occupy in each other’s ranked lists, which in this case is 25, as depicted in the figure. The
computation of the pixel value is defined by Equation 5.1.

Figure 5.4 presents examples of images generated for synthetic ranked lists with
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Figure 5.3 – Illustration that exemplifies the calculation of a contextual image constructed from
a hypothetical ranked list.

different effectiveness levels. The synthetic data was generated considering N = 1400,
L = 200, C = 70, and kv = 20. It can be seen that as the MAP (Mean Average Precision)
increases, more blacker pixels tend to appear in the upper left corner of the image, for
example. However, there are still many other aspects that can be analyzed in this type of
image, since there are multiple possible images for ranked lists with the same MAP.

5.2.2 Denoising Convolutional Neural Network for Effectiveness Estimation

As a part of the DRNE approach, this work proposes a Convolutional Neural
Network for estimating the effectiveness of ranked lists based on their image representations.
The idea is that each ranked list image contains a certain level of noise, which is related
to its effectiveness. Following this reasoning, the more effective a ranked list is, the less
noise is associated with it, and vice versa.

Our method involves applying the model to extract noise and assigning a score,
which we expect to be related to the effectiveness of the ranked list. Figure 5.5 presents
the model proposed and considered for all the experiments in this work. We modified
the DnCNN [409] model to consider 10 blocks of convolution, batch normalization, and
activation layer. The learned noise is flattened and submitted to a sequence of dense and
dropout layers which should learn a single float score that represents the effectiveness of
the ranked list provided as input. The MAP of the synthetic data is considered as the
groundtruth during training.

In all the experiments, the Nesterov-accelerated Adaptive Moment Estimation
(NAdam) optimizer was used with a learning rate of 10−4 and Mean Squared Error (MSE)
loss. The network was trained considering batches of size 2, where both images correspond
to the same image but with different augmentations. The method is set to have a 50%
probability of thresholding the pixels of the image. If the image is chosen for thresholding,
a random value between 100 and 255 is selected. All pixels with values above this threshold
are then set to 255. This is done to improve the network generalization during the learning
process.
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(a) MAP = 0.953625

(b) MAP = 0.521048

(c) MAP = 0.198827

Figure 5.4 – Examples of images generated for synthetic ranked lists with different degrees of
effectiveness.
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Figure 5.5 – Proposed CNN model for effectiveness prediction.
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5.3 Regression for Query Performance Prediction Framework
(RQPPF)
This section presents the proposed Regression for the Query Performance Prediction

Framework - RQPPF. The proposed approach exploits synthetically generated data to
support a self-supervised learning strategy. Contextual rank-based measures are extracted
from the data to train the regression models. Among the primary contributions of
RQPPF, we can highlight: (i) a framework for applying regression models to the task of
query performance prediction, the RQPPF; (ii) a strategy for modeling ranked lists as
feature vectors, including reciprocal neighborhood analysis; (iii) an approach consistently
trained on synthetic data, eliminating the need for real labels and enabling cost-effective
self-supervised training; (iv) significant results were achieved on 4 datasets, including
person re-identification (Re-ID) scenarios.
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Figure 5.6 – Diagram of the proposed approach (RQPPF) for self-supervised query performance
prediction.

Figure 5.6 illustrates the main steps of the proposed method. The main ideas of
each step are outlined as follows:

1. Synthetic Data Computation: How to train a regression model if no label data
is available? This challenge was addressed in our approach by generating synthetic
ranked lists. Each ranked list is assigned to a virtual class and a synthetic confusion
matrix is used to define the probability of including non-relevant results (from other
virtual classes) in the retrieval results.
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2. Contextual Rank-Based Features (for Training Data): Contextual rank-based
features are extracted from the synthetic ranked lists. The features include
information from the reciprocal ranking references and unsupervised effectiveness
estimation measures.

3. Regression Model Training: The contextual rank-based features and effectiveness
measures based on virtual classes are available for each synthetic ranked list. Based
on this data, the regression model is trained;

4. Contextual Rank-Based Features (for Testing Data): The same contextual
rank-based measures extracted from synthetic training data are also extracted from
real-world datasets for testing.

5. Regression Model Prediction: The self-supervised regression model is employed
on contextual rank-based measures from testing data for query performance
prediction.

Section 5.3.1 presents functions used as part of the formulation of the proposed
approach, including the Authority Score [243] and the Reciprocal Density [248] effectiveness
estimation measures. While Section 5.3.2 describes how the meta-features are computed
along with equations and formal definitions, Section 5.3.3 discusses how the framework
employs the regression models for self-supervised training.

5.3.1 Background Formulation

A function is defined to explain some steps of our approach as fp : C × N → C,
such that given an image oq and the position p, it returns the image in the position p of
the ranked list τq:

fp(oq, p) = {oi | oi ∈ C ∧ τq(oi) = p}. (5.2)

We also define the function fin(i, q) → {0, 1}, which indicates if an image belongs to a
neighborhood set, returning 1 if oi ∈ N (q, k).

Our approach uses rank-based measures, represented by γ(·, ·), which can be
any unsupervised effectiveness estimation measure. In this work, we considered both
Authority [243] and Reciprocal [248] as measures to compute the meta-features.

The Authority Measure [243] is based on a graph of image relationships from ranked
lists for effectiveness estimation. Each image in top-k positions of the ranked list τq defines
a node. For each image oi in the top-k of τq, the ranked list τi is also analyzed. If there
are images in common in ranked lists τq and τi, an edge is created. The Authority Score is
computed based on the graph density:

γA(τq, k) =
∑

i∈N (q,k)
∑

j∈N (i,k) fin(j, q)
k2 , (5.3)
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where γA ranges from 0 to 1, with a higher score indicating a fully connected graph within
the top-k positions.

Similar to the Authority [243], Reciprocal Density [248] is defined based on graph
density. However, it also incorporates neighbor weights:

γR(τq, k) = 1
k4

∑
i∈N (q,k)

∑
j∈N (i,k)

fin(j, q) wr(q, i) wr(i, j). (5.4)

Weights are determined by the function wr(q, i) = k+1− τq(i), with higher weights
indicating a frequent occurrence of reciprocal neighbors in top-ranked positions.

5.3.2 Contextual Rank-based Features

Our approach uses the method presented in Section 5.1 for generating synthetic
data. One of the main contributions of this work is the strategy to compute contextual
rank-based features, also known as meta-features, which are computed for both training
and testing data. The process of computing meta-features is composed of the following
steps.

(i) Reciprocal Neighborhood: A binary vector b is modeled to encode the
reciprocal (mutual) neighborhood, where 1 indicates that the corresponding element is a
mutual neighbor and 0 otherwise. The idea is that elements that are reciprocal neighbors
have a higher relevance. Let bi represent a binary vector corresponding to image oi, and
let d denote the depth to which the ranked list is analyzed. The vector bi is defined based
on the reciprocal references among images for image oi, as:

bi = [bi1 , bi2 , . . . , bid
], (5.5)

where bij
is computed for oj from j = 1 to j = d, such that bij

= 1 if oj ∈ N (i, k) ∧ oi ∈
N (j, k), and bqi

= 0, otherwise. The oj is the j-th element in the ranked list of element i,
such that oj = fp(oi, j).

(ii) Effectiveness Estimation Measures: Query performance prediction
approaches can be used to encode effectiveness estimation into the meta-feature, such that
higher values indicate higher effectiveness. This approach considers either Authority [243]
or Reciprocal [248] for this step. Let qi be a vector for the image oi that contains the
query performance prediction values of one of these approaches. The vector qi is defined
considering a depth d:

qi = [qi1 , qi2 , . . . , qid
], (5.6)

where qij
is the value provided by an effectiveness estimation function; such that qij

=
1 + γ(τj), where oj = fp(oi, j). Both Authority (γA) [243] and Reciprocal (γR) [248] scores
can be used interchangeably as the γ function.
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(iii) Reciprocal Rank Position: The reciprocal position of two images in their
ranked lists, i.e., the position of image i in the ranked list of image j and vice versa, can
provide valuable insights into their similarity. If both images rank each other highly, it
indicates a strong mutual similarity. Conversely, if the ranks are low, it suggests that the
images are less similar to each other. This reciprocal ranking approach can be particularly
useful in refining image similarity. Because of this, a vector p is computed to encode the
mean position between two images in their ranked lists. Similar to the other vectors, pi is
defined as follows:

pi = [pi1 , pi2 , . . . , pid
]. (5.7)

Let oj = fp(oi, j) be the j-th element in the ranked list of element i, the value of pij
is

based on the mean of τj(i) and τi(j), defined as:

pij
= 1

((τi(j) + τj(i))/2 + 1) . (5.8)

The inverse ensures that the top positions in the ranked lists correspond to higher values,
effectively functioning as a similarity measure.

(iv) Contextual Rank-based Feature (Meta-Feature): The vectors bi, qi,
and pi, are used to compute the meta-feature f that is used to train the regression model.

f = b× (b + q × p). (5.9)

In summary, b is a binary vector considering reciprocal neighbors, q represents
effectiveness measures by γ, and p encodes position data. These aspects are all combined
in the vector f . Using the contextual rank-based features f , we can train a regression
model on synthetic data and subsequently evaluate its performance using a real dataset
for testing.

5.3.3 Regression Models

Our framework is flexible and can be trained with different regression models. Let
a regression model be defined as a pair of functions (ϕtr, ϕts), such that ϕtr is responsible
for training and ϕts for testing. Both train and test features are modeled as described in
Equation 5.9. The training procedure is performed considering only synthetic data, which
is represented by a set of synthetic features fs. The set fs is taken as input by ϕtr, such that
ϕtr(fs) returns the effectiveness estimation scores of training data that are evaluated along
the epochs by the loss function. In this work, the models were trained considering the
default parameters5. We highlight that, for training, only synthetic data was considered,
which makes the approach self-supervised.
5 Python 3.8 sklearn implementation was considered for all regression models.
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The idea is to apply transfer learning to real scenarios. The real dataset is used as
a test set to obtain the effectiveness estimation results. We denote the set of test features
by ft, which is provided as input for the prediction regression model (ϕts), such that ϕts(ft)
returns the effectiveness estimation scores of the real dataset used for testing. The higher
the score, the higher the predicted effectiveness.

5.4 Experimental Evaluation
This section presents the experimental evaluation for both DRNE and RQPPF,

conducted under the same protocol. Additionally, both methods are compared with each
other. A discussion is provided at the end of this section, which includes a joint analysis
and combinations of the approaches.

5.4.1 Experimental Protocol

The experiments considered 5 different datasets with sizes ranging from 1,336
to 36,411 images: Flowers [229], MPEG-7 [161], Brodatz [35], Market1501 [422], and
DukeMTMC [428]. More detailed information about the datasets and effectiveness measures
is provided in Chapter 4. For all the datasets, the Pearson correlation of the QPP approach
and the Mean Average Precision (MAP) was considered for evaluating the effectiveness.
In all the cases, all images were considered as query images, except for Re-ID datasets,
where only query images specified by the dataset protocol were considered, as done by
most of the authors in the literature. The descriptors vary in each case, according to the
properties of each dataset. In total, more than 30 different descriptors were considered for
these experiments.

Two different trainings were done, both of them considered artificially generated
data for keeping the strategy and analysis unsupervised. One of the main parameters is
the size of the virtual classes (kv), which impacts the images generated for training. While
the first training considered data with kv = 20, the second used kv = 80. The models
trained with kv = 80 were evaluated on the Flowers [229] dataset, while the models trained
with kv = 20 were evaluated on all the other datasets. The artificial dataset contains
1,400 and 1,360 images for training with kv = 20 and kv = 80, respectively. To compute
meta-features, the RQPPF considered the value of the neighborhood and depth d equal
to the size of virtual classes, such that k = kv. Of the total synthetic images, 200 were
randomly selected for validation, and the remaining images were used for training. In both
cases, 7 synthetic ranked list sets were generated with different levels of effectiveness. This
adjustment is done by restricting the intervals in the diagonal of the confusion matrix: the
first descriptor uses [0, 0.25], second uses [0, 0.5], third uses [0, 0.75], fourth uses [0, 1],
fifth uses [0.25, 1], sixth uses [0.5, 1], and seventh uses [0.75, 1].
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5.4.2 DRNE Parameter Analysis

Figure 5.7 shows the loss values for training and validation data in both artificial
training sets (i.e., with kv = 20 and kv = 80) along 20 epochs. As can be seen, the losses
decrease as the epochs increase. After 15 epochs, we can see that the model starts to
decrease the training loss much slower than before, but the validation still varies. For this
reason, we trained the model for 15 epochs in all experiments to avoid overfitting on the
artificial data.

Our method is compared to both Authority and Reciprocal. To keep the comparison
fair, we used k = 20 for DRNE and the baselines in all cases. The only exception is the
Flowers dataset, where k = 80 was used since it has larger classes than the others.
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(a) Training for kv = 20.
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(b) Training for kv = 80.

Figure 5.7 – Losses along training epochs for train and validation sets.

5.4.3 DRNE Results

Table 5.1 presents the Pearson correlation between MAP and the effectiveness
estimation measures (Authority Score, Reciprocal Density, and DRNE) for around 30
different descriptors on the Flowers dataset. To keep the comparison fair in this case,
k = 80 was used for our approach and the baselines. The best results are highlighted in
bold for each line. For the negative correlations (FOH and SCH), none of the methods were
highlighted in bold. The last line of the table contains the correlation when considering
all the ranked lists of all descriptors together. The original MAP of each descriptor is
also presented with the objective of facilitating the analysis of the results. Notice that
the best results (higher correlations) tend to be more frequent on descriptors of high
effectiveness (which is the case of the CNNs). Consequently, scenarios with descriptors of
low effectiveness tend to be more challenging (e.g. FOH, SCH, GIST). Besides that, the
proposed approach (DRNE) achieved the best results in most of the cases, even in difficult
scenarios (e.g. ACC, EHD, SPLBP). These cases of negative correlation occur due to the
low effectiveness of such descriptors and still require more investigation.
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Table 5.1 – Pearson correlation between MAP and effectiveness estimation measures on Flowers
dataset.

Descriptors Original Auth. Recipro. DRNE
MAP (ours)

CNN-FBResNet [110] 52.56% 0.73744 0.67153 0.79920
CNN-ResNeXt [372] 51.91% 0.76568 0.66525 0.79265
CNN-ResNet [110] 51.83% 0.72981 0.63672 0.79903
CNN-DPNet [51] 50.93% 0.77143 0.72479 0.79896
CNN-Xception [52] 47.31% 0.74365 0.64060 0.76958
CNN-BnInception [122] 46.58% 0.57857 0.48638 0.72061
CNN-AlexNet [151] 46.04% 0.46586 0.35353 0.63521
CNN-SENet [117] 43.16% 0.58722 0.57195 0.63076
CNN-InceptionV4 [302] 42.35% 0.67885 0.58592 0.61974
CNN-InceptRN [302] 42.20% 0.62725 0.53364 0.55041
CNN-BnVGGNet [198] 41.87% 0.48524 0.36175 0.63133
CNN-NASNetLg [445] 40.74% 0.63091 0.55103 0.54974
CNN-VGGNet [198] 39.05% 0.50498 0.32844 0.63850
SIFT [205] 28.47% 0.34815 0.31624 0.48026
BIC [295] 25.56% 0.21481 0.16794 0.36447
SPJCD [401, 209] 22.56% 0.27962 0.24767 0.33553
SPCEDD [40, 209] 21.94% 0.31110 0.26055 0.34731
COMO [342] 21.83% 0.10506 0.08213 0.25892
SPFCTH [41, 209] 21.73% 0.19618 0.18878 0.26632
JCD [401] 20.89% 0.15319 0.11306 0.24018
FCTH [41] 20.56% 0.18428 0.13488 0.23862
CEDD [40] 20.48% 0.13077 0.10192 0.20104
SPACC [119, 209] 19.20% 0.07436 0.03312 0.20229
ACC [119] 18.99% 0.03264 0.02153 0.28373
CLD [53] 18.54% 0.32734 0.25345 0.34693
PHOG [59, 209] 14.74% 0.33586 0.33548 0.37418
SCH [53] 13.43% -0.21997 -0.20886 -0.13598
EHD [215] 12.46% 0.03510 0.06457 0.20214
FOH [337, 209] 11.42% -0.06418 -0.06645 -0.03603
SPLBP [231, 209] 10.92% 0.06942 0.07869 0.14425
LBP [231] 10.34% 0.01482 0.02083 0.07323
SCD [53] 10.25% 0.25619 0.10035 0.05702
GIST [232] 9.82% -0.01581 0.02297 0.02691
All Descriptors — 0.39789 0.31277 0.42907

An experiment was conducted to evaluate the complementary among the results
provided by each effectiveness estimation measure. Table 5.2 shows the Pearson correlation
between each pair of measures for the MPEG-7 dataset. Notice that Authority and
Reciprocal are highly correlated, while DRNE is the least correlated with the other two,
which indicates that our approach has great potential to be combined with the others.

Table 5.2 – Pearson correlation between estimation measures for all descriptors of MPEG-7
dataset.

Authority Reciprocal DRNE (ours)
Authority 1.0000 0.96928 0.86480
Reciprocal 0.96928 1.0000 0.87641
DRNE (ours) 0.86480 0.87641 1.0000

All the remaining datasets, where k = 20 was used, are presented in Table 5.3.
Besides the individual results for each measure, combinations of measures are also presented.
The combinations were done by summing the measures, also the abbreviations A, R, and
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Table 5.3 – Pearson correlation between MAP and effectiveness estimation measures on datasets
considering train with k = 20.

Dataset Descriptors Original Auth. Recipro. DRNE A+R D+A D+R D+A+RMAP

M
PEG-7

AIR [103] 89.39% 0.76392 0.75069 0.87705 0.76419 0.86921 0.88494 0.86386
ASC [191] 85.28% 0.76594 0.81430 0.74678 0.77823 0.79525 0.78578 0.80045
IDSC [190] 81.70% 0.77826 0.80911 0.74767 0.78716 0.79826 0.78162 0.80235
CFD [244] 80.71% 0.79817 0.83621 0.82587 0.80758 0.84616 0.84731 0.84769
BAS [13] 71.52% 0.79029 0.84011 0.79698 0.80281 0.81826 0.82081 0.82334
SS [317] 37.67% 0.78474 0.81322 0.84026 0.79460 0.83954 0.84605 0.84076
All Descriptors — 0.85355 0.88229 0.84607 0.86131 0.88019 0.86754 0.88336

Bro
dat

z
LAS [308] 75.15% 0.64725 0.63484 0.69576 0.65333 0.70116 0.70457 0.70007
CCOM [148] 57.57% 0.63535 0.60433 0.65631 0.63799 0.67730 0.66598 0.67608
LBP [231] 48.40% 0.49609 0.42214 0.49984 0.49278 0.52400 0.50540 0.5199
All Descriptors — 0.57502 0.54266 0.59152 0.57759 0.61023 0.60107 0.60917

M
ar

ke
t

CNN-OSNET-AIN [436] 43.30% 0.65170 0.60202 0.63451 0.64876 0.66854 0.64148 0.66665
CNN-HACNN [177] 23.30% 0.52763 0.48562 0.52421 0.52611 0.54461 0.52853 0.54371
CNN-ResNet [110] 22.82% 0.60783 0.55807 0.60246 0.60517 0.62471 0.60710 0.62385
CNN-MLFN [39] 21.98% 0.57916 0.53273 0.55649 0.57662 0.58287 0.56158 0.58243
BOVW [422] 13.34% 0.39235 0.31576 0.38518 0.3832 0.40171 0.38429 0.3983
WHOS [192] 6.23% 0.13383 0.14891 0.22140 0.13952 0.20209 0.21919 0.2005
All Descriptors — 0.61279 0.53534 0.57867 0.60599 0.61197 0.58337 0.61038

Duke
CNN-OSNET-AIN [436] 52.69% 0.64525 0.64349 0.64988 0.64861 0.67623 0.66199 0.67631
CNN-ResNet [110] 32.00% 0.69101 0.67709 0.67628 0.69335 0.70446 0.68566 0.70552
WHOS [192] 2.65% 0.00572 0.03644 0.11433 0.01163 0.07868 0.10800 0.07615
All Descriptors — 0.72574 0.70560 0.71234 0.72660 0.74163 0.72138 0.74189

D were used for Authority, Reciprocal, and DRNE, respectively. Notice that in most of
the cases, the best results correspond to our approach or a combination that involves our
approach. While most of the datasets consider classes of the same size, this does not occur
for the Re-ID datasets (Market and Duke). Even with this challenge, the results are very
promising. The combination of the three measures achieved up to 0.74 Pearson correlation
in the Duke dataset, which is very significant considering that no labels were used.

Figure 5.8 presents a graph where each dot corresponds to a ranked list of the
DukeMTMC dataset. The dots are plotted according to the value presented by the
effectiveness estimation (which uses no labels) and the MAP (which uses labels). As can
be seen, the results provided by the combination of the three measures present a more
linear shape, and consequently a higher Pearson correlation as well.

Two visual query examples are presented in Figure 5.9 with the DRNE score
obtained for each of them. The query image is presented in green borders and the incorrect
results are in red borders. Notice that DRNE attributed a lower score for the ranked list
which presented wrong images and a higher score (very close to 1) for the one without
errors.

Regarding execution time, the prediction time is 9.2909 ± 9.38663 milliseconds
considering the mean and standard deviation for 44,880 different ranked lists. A training
of 9,600 images takes about 25 minutes to run for each epoch on NVIDIA RTX 2080 GPU.
For a training of 20 epochs, it is required around 8 hours in total.
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Figure 5.8 – Correlation of MAP and effectiveness estimation measures on DukeMTMC.
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(a) Ranked list with DRNE score of 0.5153

(b) Ranked list with DRNE score of 0.9650

Figure 5.9 – Two examples of ranked lists (good and bad queries) for Duke dataset and
OSNET-AIN descriptor.

5.4.4 RQPPF Parameter Analysis

Our method requires two parameters: k, which defines the neighborhood size used
for computing the measures in all the stages of the algorithm; and d, which denotes the
size of the features used for training. An evaluation was conducted in order to assess the
set of parameters that provided the highest Pearson correlation in relation to the MAP. In
this case, the Support Vector Regression (SVR) + Reciprocal was considered for training
on the synthetic data. Figure 5.10 presents the results considering the ranked lists of all
descriptors on the MPEG-7 dataset. Notice that the feature size shows an asymptotic
behavior that reaches stabilization closer to the value of 20. In contrast, neighborhood
size presents a parabolic pattern where the highest value is also close to 20. Therefore, we
adopted the value of 20 for both parameters in all the following experiments.

Figure 5.10 – Impact of parameters on Pearson correlation between MAP and our approach on
MPEG-7 dataset (all descriptors). Through this analysis, we were able to consider
the best k value (neighborhood size).
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The proposed method trains a regression model with a set of meta-features computed
based on different rank-based functions. Table 5.4 presents the Pearson correlation results
for our approach considering different regression models and two measures: Authority [243]
and Reciprocal [248]. Both MPEG-7 and Brodatz were used since they are among the
smallest datasets considered. The best result for each column is highlighted in red and
the second best is highlighted in blue. As can be seen, the SVR with the linear kernel
provided the best results in most cases, followed by the Bayesian Ridge. Accordingly, all
the remaining experiments were conducted using the SVR with a linear kernel for the
proposed RQPPF.

Table 5.4 – Pearson correlation between our proposed approach and MAP considering different
regression models and effectiveness estimation measures. For each column, the red
values represent the highest values and the blue values represent the second-highest
values found.

Regression Model MPEG-7 Brodatz
+Auth. +Rec. +Auth. +Rec.

LinearRegression 0.87833 0.89399 0.61228 0.60527
KernelRidge 0.81046 0.79683 0.46840 0.43406
BayesianRidge 0.87854 0.89408 0.61244 0.49098
SVR Linear [79] 0.87975 0.89773 0.61335 0.60627
SVR RBF [79] 0.84466 0.82981 0.52859 0.49610
SVR Poly [79] 0.82602 0.88899 0.55406 0.61989
SGD [414] 0.83519 0.79746 0.50003 0.43640
XGBRegressor [46] 0.83668 0.85111 0.51784 0.51241
LGBMRegressor [139] 0.84391 0.85384 0.52260 0.50898
CatBoostRegressor [75] 0.83835 0.85141 0.51689 0.50473
GradientBoosting [92] 0.84641 0.86428 0.52423 0.50524

5.4.5 RQPPF Results

The experimental evaluation was conducted based on the conjecture that the scores
predicted by the regression model present a high Pearson correlation with ground-truth
effectiveness measures (e.g., MAP, Precision). The proposed RQPPF framework can use
different unsupervised effectiveness estimation measures (as described in Section 5.3.2) to
compute meta-features. With the objective of analyzing the impact of each measure, we
compared the results obtained by RQPPF using both Authority [243] and Reciprocal [248]
scores in relation to the original measures. The results are presented in Tables 5.5 and 5.6,
respectively. The relative gains are computed as (valueafter − valuebefore)/valuebefore.
Notice that positive relative gains were obtained in all cases. The results clearly show that
our approach is capable of improving the unsupervised measure results that it uses as the
basis of its training.

An experiment was performed with the intent of visualizing the correlation of
our RQPPF using SVR+Reciprocal with MAP. Figure 5.11 presents a plot where each
dot corresponds to a different ranked list and its position depends on the MAP and the
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Table 5.5 – Relative gains obtained by RQPPF using the Authority estimation measure for
modeling the features.

Dataset Descriptor Original RQPPF
Auth. + Auth. Gain (%)

M
PEG-7

AIR [103] 0.76392 0.79068 +3.51
ASC [191] 0.76594 0.79472 +3.76
IDSC [190] 0.77826 0.80696 +3.69
CFD [244] 0.79817 0.83005 +3.99
BAS [13] 0.79029 0.81953 +3.70
SS [317] 0.78474 0.83188 +6.01

Bro
dat

z LAS [308] 0.64725 0.70560 +9.02
CCOM [148] 0.63535 0.68194 +7.33
LBP [231] 0.49609 0.52141 +5.10

M
ar

ke
t

CNN-OSNET [436] 0.65170 0.65943 +1.19
CNN-HACNN [177] 0.52763 0.54317 +2.95
CNN-ResNet [110] 0.60783 0.60861 +0.13
CNN-MLFN [39] 0.57916 0.58535 +1.07
WHOS [192] 0.13383 0.16308 +21.86

Duke
CNN-OSNET [436] 0.64525 0.66044 +2.35
CNN-ResNet [110] 0.69101 0.69458 +0.52
WHOS [192] 0.00572 0.04542 +694.06

Table 5.6 – Relative gains obtained by RQPPF using the Reciprocal estimation measure for
modeling the features.

Dataset Descriptor Original RQPPF
Rec. + Rec. Gain (%)

M
PEG-7

AIR [103] 0.75069 0.84824 +12.99
ASC [191] 0.81430 0.82931 +1.84
IDSC [190] 0.80911 0.82437 +1.89
CFD [244] 0.83621 0.85888 +2.71
BAS [13] 0.84011 0.84934 +1.10
SS [317] 0.81322 0.84186 +3.52

Bro
dat

z LAS [308] 0.63484 0.70560 +11.15
CCOM [148] 0.60433 0.67188 +11.18
LBP [231] 0.42214 0.48704 +15.37

M
ar

ke
t

CNN-OSNET [436] 0.60202 0.63481 +5.45
CNN-HACNN [177] 0.48562 0.52337 +7.77
CNN-ResNet [110] 0.55807 0.58761 +5.29
CNN-MLFN [39] 0.53273 0.56069 +5.25
WHOS [192] 0.14891 0.17515 +17.62

Duke
CNN-OSNET [436] 0.64349 0.66518 +3.37
CNN-ResNet [110] 0.67709 0.69373 +2.46
WHOS [192] 0.03644 0.05878 +61.31

proposed effectiveness estimation values. The evaluation was conducted on all the ranked
lists and descriptors of MPEG-7. Notice that the distribution is very linear, with a Pearson
correlation equal to 0.8977. This clearly evinces the capacity of our approach to predict
the effectiveness of ranked lists.

Finally, for visualization purposes, Figure 5.12 presents two examples of ranked
lists where the query images are indicated by green borders and the incorrect images are
indicated by red borders. The MAP is presented alongside the effectiveness obtained by our
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method for two ranked lists: one with higher effectiveness and one with lower effectiveness.
It is possible to see that the estimations are coherent with the visual correctness of the
ranked lists presented.

Figure 5.11 – Proposed approach against MAP on MPEG-7 dataset (all descriptors). Pearson
Correlation = 0.8977.

Ranked list with lower effectiveness: MAP = 7.41%; RQPPF (SVR + Auth.)
= 0.2535; RQPPF (SVR + Rec.) = 0.2266

Ranked list with higher effectiveness: MAP = 27.30%; RQPPF (SVR +
Auth.) = 0.4873; RQPPF (SVR + Rec.) = 0.5330

Figure 5.12 – Two examples of RQPPF results on ranked lists of Market dataset (CNN-HACNN
descriptor).

5.4.6 Joint Comparison and Discussion

In this section, the proposed methods DRNE and RQPPF are jointly evaluated
alongside Authority [243] and Reciprocal [248]. The proposed methods used the same
synthetic data for training. To make the comparison fair, k = 20 was used for all the
methods. Table 5.7 presents the comparison with Authority and Reciprocal in 4 datasets,
including both general-purpose and Re-ID. The values of the proposed approaches are
highlighted with a gray background. The results of RQPPF are presented for two different
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measures (both RQPPF+Auth. and RQPPF+Rec.). The best result for each line is
highlighted in red and the second best is highlighted in blue. Notice that RQPPF provided
the best results in most cases, with very few exceptions. It is also possible to see that
in cases where the original MAP of the descriptor is too low or too high (e.g., WHOS
and AIR), it is more difficult to predict the effectiveness correctly. In these cases, DRNE
obtained the best outcomes.

Table 5.7 – Comparing RQPPF and DRNE to baselines. Pearson correlation between MAP
and effectiveness estimations is reported. The results of the proposed methods are
highlighted with a gray background.

Descriptor Original Auth. Rec. DRNE RQPPF RQPPF
MAP +Auth. +Rec.

MPEG-7
AIR [103] 89.39% 0.76392 0.75069 0.87705 0.79068 0.84824
ASC [191] 85.28% 0.76594 0.81430 0.74678 0.79472 0.82931
IDSC [190] 81.70% 0.77826 0.80911 0.74767 0.80696 0.82437
CFD [244] 80.71% 0.79817 0.83621 0.82587 0.83005 0.85888
BAS [13] 71.52% 0.79029 0.84011 0.79698 0.81953 0.84934
SS [317] 37.67% 0.78474 0.81322 0.84026 0.83188 0.84186

Brodatz
LAS [308] 75.15% 0.64725 0.63484 0.69576 0.70560 0.70560
CCOM [148] 57.57% 0.63535 0.60433 0.65631 0.68194 0.67188
LBP [231] 48.40% 0.49609 0.42214 0.49984 0.52141 0.48704

Market
OSNET [436] 43.30% 0.65170 0.60202 0.63451 0.65943 0.63481
HACNN [177] 23.30% 0.52763 0.48562 0.52421 0.54317 0.52337
ResNet [110] 22.82% 0.60783 0.55807 0.60246 0.60861 0.58761
MLFN [39] 21.98% 0.57916 0.53273 0.55649 0.58535 0.56069
WHOS [192] 6.23% 0.13383 0.14891 0.22140 0.16308 0.17515

Duke
OSNET [436] 52.69% 0.64525 0.64349 0.64988 0.66044 0.66518
ResNet [110] 32.00% 0.69101 0.67709 0.67628 0.69458 0.69373
WHOS [192] 2.65% 0.00572 0.03644 0.11433 0.04542 0.05878
Colors for each row: Second highest value Highest value

We also performed combinations of the proposed approaches with the baselines,
where each pair of effectiveness estimations (E1, E2) is formulated as (E1 +1)× (E2 +1) for
each ranked list. Table 5.8 presents the results. The best isolated corresponds to the best
result among the methods reported in Table 5.7. Abbreviations are also included: Regression
for Query Performance Prediction Framework (RQPPF); Authority (A); Reciprocal (R);
Deep Rank Noise Estimator (DRNE). The values reveal that the combinations further
improved the Pearson correlation. However, the WHOS is still a challenge since the original
MAP is very low (2.65%).
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Table 5.8 – Pearson correlation between MAP and combinations of methods on Re-ID datasets.

Dataset Descriptor
Original Best (RQPPF+A, (RQPPF+A, (RQPPF+R, (RQPPF+A,

MAP Isolated RQPPF+R) DRNE) DRNE) RQPPF+R,
DRNE)

M
ar

ke
t

OSNET [436] 43.30% 0.65943 0.65357 0.66372 0.64534 0.66164
HACNN [177] 23.30% 0.54317 0.54410 0.55456 0.54263 0.55666
ResNet [110] 22.82% 0.60861 0.61045 0.62695 0.61393 0.62722
MLFN [39] 21.98% 0.58535 0.58599 0.59100 0.57574 0.59560
WHOS [192] 6.23% 0.22140 0.16950 0.18861 0.19395 0.18374

D
uk

e OSNET [436] 52.69% 0.66518 0.66047 0.67933 0.67907 0.67127
ResNet [110] 32.00% 0.69458 0.69938 0.71094 0.70905 0.70844
WHOS [192] 2.65% 0.11433 0.05063 0.07766 0.08451 0.06834
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6 Rank Correlation Measures for Manifold
Learning on Image Retrieval

Recently, rank-based approaches [323, 327] have achieved highly effective retrieval
results. Rank structures provide a rich source of contextual similarity information, once
the most relevant information is organized at the top of ranked lists. The Ranked-List
Similarities (RL-Sim) algorithm [247] exploits rank correlation measures based on the
conjecture that, if two images are similar, their respective ranked lists are expected to
be similar as well. In this research direction, rank correlation measures and the overlap
between the neighborhood sets have been successfully exploited [323, 327] to compute
more effective similarity measures in retrieval tasks.

In this scenario, the relevance of effectively quantifying the similarities between
ranked lists is latent, once many manifold learning methods are based on such correlation
measures. The Rank-Biased Overlap (RBO) [358] measure, based on a probabilistic user
model, uses a key parameter that determines the weight for the top positions in the ranking
and has been widely used. However, most of the measures are dependent on the depth of
ranked lists considered or the size of the k-neighborhood set.

In this chapter, a novel rank correlation measure is proposed and validated on
an unsupervised manifold learning algorithm for image retrieval. We propose a measure
based on the Jaccard index, which is capable of identifying maximum similarity indications
at different depths of ranked lists. Therefore, the proposed measure is more robust to
the definition of the size of the neighborhood set, which is essential in unsupervised
scenarios and allows the achievement of more effective results. The measure is used on a
manifold learning algorithm based on a Correlation Graph (CG) and Strongly Connected
Components (SCC) [249].

A wide experimental evaluation was conducted to assess the effectiveness of the
proposed approach. General image retrieval and person Re-ID datasets were considered.
CNN and ViT models were considered through transfer learning on unsupervised scenarios.
The results demonstrated that the proposed JacMax measure achieved superior results than
the RBO measure in all evaluated scenarios. The proposed approach was also evaluated
on the fusion of features, achieving results comparable or superior to the state-of-the-art
in most datasets.

This chapter is organized as follows: Section 6.1 discusses the main ideas and
formally defines the proposed measure. Section 6.2 presents the experimental evaluation
on unsupervised manifold ranking.
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6.1 Proposed Method
There is a myriad of rank correlation measures proposed in the literature [323].

The most effective results on unsupervised manifold learning for retrieval tasks have been
achieved by measures that consider the size of intersection/overlap at k-neighborhood sets
(i.e., Jaccard). However, defining an appropriate value for k is a challenging task. Small
values can lead to cuts that are unrepresentative in certain scenarios. Larger sizes, in turn,
may bring in information that is not relevant.

An alternative is given by weighted measures which assign higher weights to overlaps
at top positions (i.e., Intersection, RBO) [323, 247], or multi-level analysis [67]. In fact,
assigning weights to top positions is a relevant strategy and improves the robustness of
neighborhood size definition, but faces other difficulties in how to define the weights.

In this work, we propose to solve this challenge by identifying the depth that
presents the maximum Jaccard index until a depth k. The main conjecture behind this
approach is that a high overlap between ranked lists, at any depth, should be considered a
strong indication of similarity. If it occurs at top positions, these are the most confident
positions. If it occurs to depths closer to k, it requires a greater overlap.

6.1.1 Jaccard Max Definition

A rank correlation measure defines a quantitative measure for assessing the similarity
of two ranked lists. Given the broad use of top-k ranking analysis in retrieval applications,
how to effectively compare such information assumes a fundamental relevance in many
scenarios. Based on the model discussed in the previous section, a rank correlation measure
can be defined as a function λ : T ×T → R. Once most measures consider the top positions
of ranked lists, a set N (oi, k) is used to denote the k-neighborhood set which contains the
top-k elements of the ranked list τi.

The original Jaccard index is a traditional statistic measure that computes the
correlation between two ranked lists based on the size of the intersection and the union of
neighborhood sets. The index is formally defined as:

Jaccard(τi, τj, k) = |N (oi, k) ∩N (oj, k)|
|N (oi, k) ∪N (oj, k)| . (6.1)

Aiming at discussing possible limitations of the original Jaccard, Figure 6.1 presents
an illustrative example of data samples distributed in a 2D space according to their
similarities. Points A and B are close to each other, while their respective neighborhoods
are considerably distant. In this case, the Jaccard index would provide a high correlation
for k=2, which encloses both A and B. In contrast, for higher k values, the Jaccard
index is lower, since the neighborhoods of A and B are far apart. This is an interesting
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example of how the Jaccard index is susceptible to the value of k and can ignore strong
indications of similarity at distinct depths for different pairs. In this case, besides A and
B providing a clear indication of similarity, the Jaccard index indicates the opposite due
to the distribution of neighborhood elements at higher depths.

A B

● A and B are top-2 neighbors with Jaccard=1.0 for k=2
● However, Jaccard score is lower for higher k values (e.g. k=6)

Figure 6.1 – Illustrative example of original Jaccard index limitation.

Given this issue and inspired by the original Jaccard index, a more robust correlation
measure is proposed to detect strong similarity indications at different depths of ranked
lists. The Jaccard Max measure can be defined as:

JacMax(τi, τj, k) = max
1≤kd≤k

|N (oi, kd) ∩N (oj, kd)|
|N (oi, kd) ∪N (oj, kd)| . (6.2)

The max operator is useful to ensure that the highest Jaccard similarity is returned
for a given depth d. This can be used to compute a more reliable and effective similarity
between elements.

6.1.2 Application on Manifold Learning

The proposed rank correlation measure is validated on an unsupervised manifold
learning algorithm for image retrieval. The manifold learning algorithm [249] is based on
a Correlation Graph (CG) and Strongly Connected Components (SCCs). The correlation
measures are exploited to encode contextual similarity information in the graph, by
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assigning weight to edges. The main idea of the algorithm consists of distinguishing highly
effective edges and expanding relationships through these edges.

This approach computes an unweighted directed graph where each node represents
an image and the edges are defined based on a correlation measure. It applies a threshold
th, such that, all nodes that provide a correlation higher than th are built. The algorithm
starts with thstart, performing increments of thinc for every iteration, until reaching thend.

While the analysis of the graph edges aims to identify reliable similarity relationships,
the SCCs are used to expand and identify novel relationships across the graph. Similar
images are expected to be assigned to the same SCCs. In this way, the algorithm can
take into account intrinsic inter-class geometry and can be more effective at measuring
distances between images.

6.2 Experimental Evaluation
This section presents the protocol and evaluation of the Jaccard Max correlation

measure on the Correlation Graph approach for image retrieval datasets.

6.2.1 Experimental Protocol

A wide experimental evaluation was conducted, considering 6 different public
image datasets with sizes ranging from 1,491 to 36,411 images: Corel5k [194], Dogs [142],
Holidays [127], UKBench [230], Market [422], and Duke [428]. Four of them are used for
general image retrieval and two of them for person Re-ID. More detailed information about
the datasets and effectiveness measures is provided in Chapter 4.

Concerning the parameters, we used L = 1000 for all general image retrieval
datasets and L = 2000 for Re-ID datasets. The neighborhood size is k = 50 for Corel5k
and Dogs, k = 4 for datasets with very few images per class (UKBench and Holidays),
and k = 20 for Re-ID (Market and Duke). For single feature executions, we used the
default parameters of the Correlation Graph: thstart = 0.35, thinc = 0.01, and thend = 1.
For rank-aggregation, we considered: thstart = 0.05, thinc = 0.001, and thend = 1.

6.2.2 Results

We conducted an experiment with the objective of comparing the Correlation
Graph with our proposed measure in contrast to the RBO. Table 6.1 presents the results
for all the datasets and descriptors. Notice that our proposed measure achieved the highest
MAP value in all cases.

An experiment was conducted performing the rank-aggregation of the best
descriptors using our proposed JaccardMax. The results are shown for different effectiveness
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Table 6.1 – Re-ranking results considering MAP (%).

Datasets Descriptors Original
MAP

Correlation
Graph

RBO JacMax
Corel5k ResNet [110] 64.50 85.93 86.15

VIT-B16 [77] 75.02 88.39 89.92
SWIN-TF [202] 73.92 94.11 95.15

Dogs ResNet [110] 63.73 80.93 82.81
VIT-B16 [77] 79.83 86.67 87.48
SWIN-TF [202] 45.54 68.24 69.26

Holidays ResNet [110] 74.88 71.98 75.66
VIT-B16 [77] 82.40 79.71 83.44
SWIN-TF [202] 85.52 82.42 85.21
CNN-OLDFP [222] 88.46 86.24 90.25

UKBench ResNet [110] 94.54 95.31 97.17
VIT-B16 [77] 93.28 94.25 96.29
SWIN-TF [202] 97.93 98.25 99.01
CNN-OLDFP [222] 97.74 97.81 98.92

Market OSNet-AIN [437] 43.27 42.89 57.39
TransReID [111] 43.52 55.13 55.64

Duke OSNet-AIN [437] 52.66 45.82 68.39
TransReID [111] 55.42 29.39 70.77

measures (NS Score, R1, and MAP) in Table 6.2. Notice that combining features provided
even higher results than the previous single descriptor experiment (Table 6.1).

Table 6.2 – Rank-aggregation results for different measures.

Dataset Features NS R1 MAP
Score (%) (%)

C
or

el
5k

Best Isolated Feature — — 75.02
RESNET + VIT — — 94.96
RESNET + SWIN-TF — — 95.86
VIT + SWIN-TF — — 96.32

D
og

s

Best Isolated Feature — — 79.83
RESNET + SWIN-TF — — 81.18
VIT + SWIN-TF — — 85.44
RESNET + VIT — — 88.24

H
ol

id
ay

s Best Isolated Feature — — 88.46
VIT + SWIN-TF — — 86.02
CNN-OLDFP + SWIN-TF — — 90.31
CNN-OLDFP + SWIN-TF + VIT — — 91.12

U
K

B
en

ch

Best Isolated Feature 3.85 — 97.93
RESNET + SWIN-TF 3.94 — 99.05
CNN-OLDFP + VIT 3.95 — 99.13
CNN-OLDFP + SWIN-TF 3.97 — 99.55

M
ar

ke
t Best Isolated Feature — 69.57 43.52

OSNET-AIN + OSNET-IBN — 73.25 59.84
OSNET-AIN + OSNET-IBN + TReID — 73.40 60.82
OSNET-AIN + TReID — 75.42 63.53

D
uk

e

Best Isolated Feature — 71.81 55.42
OSNET-AIN + OSNET-IBN — 76.21 69.27
OSNET-AIN + OSNET-IBN + TReID — 78.77 73.39
OSNET-AIN + TReID — 78.59 73.96
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We used the best results obtained by our approach for comparing with the
state-of-the-art. Table 6.3 presents a comparison for the Holidays dataset (MAP), where
the value of 91.12% is among the best results. Table 6.4 shows the comparison for the
UKBench dataset (N-S Score). The proposed method surpasses all the results presented
with 3.97 which is very close to 4 (maximum value).

Table 6.3 – State-of-the-art on Holidays dataset (MAP).

MAP for the state-of-the-art methods
Sun Zheng Pedronette Li Liu

et al. [299] et al. [423] et al. [241] et al. [178] et al. [203]
85.50% 85.80% 86.19% 89.20% 90.89%

Yu Gordo Valem Berman Our
et al. [398] et al. [104] et al. [329] et al. [26] Result
91.40% 90.30% 90.51% 91.80% 91.12%

Table 6.4 – State-of-the-art on UKBench dataset (N-S Score).

N-S scores for the state-of-the-art methods
Lv Liu Pedronette Bai Liu

et al. [210] et al. [203] et al. [241] et al. [20] et al. [159]
3.91 3.92 3.93 3.93 3.93
Bai Valem Valem Chen Our

et al. [17] et al. [329] et al. [327] et al. [50] Result
3.94 3.94 3.95 3.96 3.97

Table 6.5 – Comparison with person Re-ID baselines.

Datasets
Method Year Market1501 DukeMTMC

R1 MAP R1 MAP
Unsupervised Methods

EANet [118] 2018 66.4 40.6 45.0 26.4
ECN [431] 2019 75.1 43.0 63.3 40.4
UTAL [171] 2019 69.2 46.2 62.3 44.6
CAP [353] 2021 91.4 79.2 81.1 67.3

Domain Adaptive Methods
HHL [430] 2018 62.2 31.4 46.9 27.2
CSGLP [273] 2019 63.7 33.9 56.1 36.0
ECN++ [432] 2020 84.1 63.8 74.0 54.4
MMCL [348] 2020 84.4 60.4 72.4 51.4
Cross-Domain Methods (single-source* and multi-source**)
*EANet [118] 2018 61.7 32.9 51.4 31.7
**EMTL [370] 2018 52.8 25.1 39.7 22.3
*AF3 [195] 2019 67.2 36.3 56.8 37.4
*AF3 [195] 2019 68.0 37.7 66.3 46.2
*PAUL [380] 2019 68.5 40.1 72.0 53.2
**Baseline by [153] 2019 80.5 56.8 67.4 46.9

Our Proposed Approach
Our Result 75.42 63.53 78.59 73.96
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Table 6.5 shows a comparison with baselines for unsupervised person Re-ID
considering MAP (%) and R-01 (%). Each result corresponds to the highest reported by
the authors of the methods. For each column, the values higher than the ones obtained by
our approach are highlighted in bold. The results show that our approach obtained very
significant results, superior to most of the baselines for the Market dataset. For Duke, the
method achieved the best MAP and the second-highest R1.

6.2.3 Visual Analysis

With the objective of visualizing the effectiveness of our approach, some ranked
lists are presented where the query image is shown in green borders and the wrong results
in red borders. For comparing RBO with our proposed measure, Figure 6.2 presents an
example of a query. Different from our approach, notice that RBO included many wrong
results among the top positions.

Similarly, we present a visualization for person Re-ID. Figure 6.3 presents three
ranked lists of the same query obtained for fusion on the Market dataset considering
OSNET-AIN + TransReID. Notice that our approach removed the wrong images present
in the isolated descriptors.

Rank-biased Overlap (RBO)

Our proposed correlation measure

Figure 6.2 – Query on Holidays with results for RBO and JacMax.

OSNET-AIN

TransReID

Fusion (ours)

Figure 6.3 – Visual example of fusion result on Market dataset.
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7 Hypergraph Rank Selection and Fusion
(HRSF)

Significant progress has been made in Content-Based Image Retrieval (CBIR)
systems over recent decades, particularly in feature extraction methods [294, 80, 438].
However, effective image retrieval remains challenging due to the complexity of human visual
perception, which cannot be captured by a single visual feature [329, 260]. This complexity
arises because images encompass multiple attributes, including color, texture, shape,
and spatial relationships, and their interpretations and meanings can vary significantly
depending on the context [24]. Given the wide variety of available visual descriptors,
approaches for selection and fusion are essential to leverage the complementarity of
different features [260].

Several fusion methods have been proposed [364, 260, 20, 413], aiming to achieve
more effective retrieval results, although only some are applied for person Re-ID. Fusion
approaches are typically categorized as early and late fusion. Early fusion combines raw
data or extracted features, in contrast to late fusion, which merges the outputs of later
processing stages, such as ranked lists or distance and similarity matrices. For early fusion
in Re-ID, some approaches proposed the use of hypergraphs [9, 403]. The general idea is
to compute a hypergraph for each feature and fuse them according to weights that the
method has learned from training. For late fusion in Re-ID, there are strategies based on
rank aggregation [389, 424], where the aggregation is performed by attributing weights for
each query of each ranker 6.

However, for most of these fusion methods, no pre-selection of features [424] is
performed, and all the features are used as input for the fusion step, which is generally
not efficient. Selecting the optimal combination of visual features for a specific retrieval
scenario is a highly challenging task due to the vast variety available [329]. It is well-known
that finding the best combination of ranked lists generated by different features is an
NP-hard problem [318, 83]. As the number of features increases linearly, the number of
possible combinations increases exponentially. Even with supervised methods, selecting
the most effective combinations of visual features is a challenging task [5]. This complexity
arises from the need to consider multiple factors, such as the diversity and complementarity
of features. The task becomes even more difficult in an unsupervised setting, where the
absence of labeled data makes it necessary to focus exclusively on unlabeled data.

This chapter addresses the challenging task of unsupervised selection and fusion of
6 In this work, a ranker is a set of ranked lists computed from features, as described in Section 2.2.3.
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different features for more effective person re-identification. We propose a novel Hypergraph
Rank Selection and Fusion (HRSF) [331] framework, which combines an unsupervised
rank-based formulation for feature selection [329] with a robust hypergraph model [251] for
query performance prediction and rank aggregation based on manifold learning. Among
our main contributions, we can highlight:

• The proposed HRSF framework uses a rank-based late fusion model, suitable for
selection and fusion of a broad diversity of features. The selection is performed by
exploiting an unsupervised measure for query performance prediction;

• A hypergraph rank-based formulation is used to encode the high-order relationship
among images. This strategy is exploited for both selection and fusion tasks.
Hypergraph models were little exploited in Re-ID literature [9, 403];

• The proposed technique is able to learn representations through the hypergraph
structure that encodes multiple features from different rankers. The manifold learning
based on a hypergraph model [251] allows effective fusion and final ranking. In
addition, our approach innovates by fusing different feature extractors trained on
different datasets;

• Different from most fusion approaches for Re-ID which often consider ad hoc selections
or combine all the features of the input set [389, 424, 403], our approach is capable
of dealing with various features in a completely unsupervised scenario, selecting
combinations in a very large search space. To the best of our knowledge, this is the
first work that performs an explicit selection and subsequently fusion of features on
person Re-ID tasks in a completely unsupervised way.

The proposed Hypergraph Rank Selection and Fusion (HRSF) approach is based on
a general framework for rank selection and fusion [329] and a hypergraph-based manifold
learning approach [251]. However, while some aspects are in common, there are also crucial
differences. Among them, we can mention:

• The problem of selecting and fusing rankers in unsupervised scenarios is very
challenging. Hence, the use of an effective algorithm for selection is fundamental.
While Unsupervised Selective Rank Fusion (USRF) [329] employs traditional query
performance prediction approaches (Authority and Reciprocal scores), we propose a
new measure named Hypergraph Query Performance Prediction (HQPP);

• Originally, USRF [329] uses an approach based on Cartesian product of ranking
references [332] for fusion tasks. Differently, the proposed HRSF uses the Log-based
Hypergraph of Ranking References (LHRR) [251] method, which in combination with
the HQPP, makes both the selection and fusion based on hypergraph structures. The



Chapter 7. Hypergraph Rank Selection and Fusion (HRSF) 124

LHRR [251] method is also more robust than the CPRR [332], achieving superior
retrieval results in most datasets;

• Both [329] and [251] were originally proposed and evaluated only on general-purpose
image retrieval scenarios. The proposed HRSF is employed and validated for person
Re-ID tasks;

• In unsupervised scenarios, the optimal neighborhood size (k parameters) can be
challenging to define. The experiments revealed that HRSF is more robust than
HQPP to different neighborhood sizes, leading to the most effective results in the
majority of scenarios.

A wide experimental evaluation was conducted on 4 different datasets with sizes
ranging from 14,097 to 39,902 images. Up to 28 different rankers were considered in
each case, resulting in millions of possible combinations. Experiments indicated that our
approach was capable of selecting and fusing the rankers, achieving highly effective results
superior to all rankers in isolation and competitive to state-of-the-art when more than 20
Re-ID approaches are considered.

The chapter is organized as follows: Section 7.1 presents the proposed approach
for rank selection and fusion in Re-ID. Section 7.2 discusses the conducted experimental
evaluation.

7.1 Proposed Method
This work proposes a framework named Hypergraph Rank Selection and Fusion

(HRSF) for unsupervised person Re-ID tasks. Our model is inspired by a recent
approach [329] proposed for rank selection and fusion on general image retrieval tasks. The
method is based on effectiveness estimations and correlation among features computed
by a rank-based analysis. In [329], reciprocal references are exploited for effectiveness
estimation and feature selection, while rank correlation measures are used for analyzing
complementarity and diversity aspects. The selected features are fused through a rank-based
similarity learning method [332].

The proposed approach differs from previous work [329] on four main aspects: (i)
the unsupervised measure used to estimate the quality of individual features, which is
based on hypergraph structures; (ii) a more robust method to fuse the selected features;
(iii) the proposed approach is evaluated and validated for person Re-ID and; (iv) it is
more robust to different neighborhood sizes, leading to the most effective results in the
majority of scenarios. We innovate by employing a robust hypergraph model for both
tasks: query performance prediction and rank fusion. A recent manifold learning approach
based on a rank-based hypergraph formulation [251] is exploited.
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The hyperedges weights, used for estimating the confidence of hyperedge
associations, are exploited in our approach to predict the effectiveness of the different
person Re-ID rankers in an unsupervised fashion. Additionally, we use a manifold
learning algorithm for fusion tasks, the LHRR [251]. This keeps our approach completely
unsupervised, and more robust, mostly based on hypergraph structures.

Figure 7.1 presents an overview of the proposed approach, where the main steps
are illustrated and enumerated. Given a set of different rankers provided by diverse feature
extractors and distance measures, (1) a hypergraph estimation measure is employed in
order to predict the performance of each ranker without using data labels. In (2), a
correlation measure is applied for each pair of rankers. The computed measures are used
in the equation presented in step (3), which computes the equation for each combination.
The rankers selected in stage (3) are fused in stage (4), which uses LHRR [251] for rank
aggregation.

The next subsections detail each of the steps of HRSF outlined in the figure. To
support the reader and assist in understanding the formulas, Table 7.1 provides a summary
of all the symbols used in the formulation of HRSF.

1

2

3 4

Hypergraph Rank
Selection and Fusion (HRSF)

Ranker R1 Ranker R2 Ranker Rm

HQPP Effec. Estimation

Correlation MeasureCorrelation Measure

Selection Measure

(R1,R2)
(R7,R8)
(R3,Rm)

Pairs Selection Combination of 
Rankers

with size n
LHRR 
Fusion

HQPP Effec. Estimation HQPP Effec. Estimation

v1

v2 v3
v4

e1

e2
e3 e4

Figure 7.1 – Overview of the HRSF proposed approach.
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Table 7.1 – Table of symbols used in the definition of HSRF [331].

Type Symbol Description

Retrieval

C Image collection.

Model

N Image collection size.
oi Image of index i.

N (q, k) Neighborhood set for a query image oq of size k.
τq Ranked list for the query image oq.
τq(j) Position of the image oj in the ranked list of the image oq.
L Size of the ranked lists.
T Set of ranked lists for all the images in the dataset.

Selection

fs Function for ranker selection.

Model

Ri Ranker of index i.
τi,q Ranked list of the image oq computed by the ranker oi.
Ti Set of ranked lists produced by the ranker Ri.
R Set of rankers.
m Size of the set R.
Xn Candidate combination composed by n rankers.
X∗

n Selected combination composed by n rankers.
X∗ Selected combination among all sizes.
n Size of a combination.
wp Selection measure for pairs of rankers.
β Weight or relevance of the correlation.
k Neighborhood size.
γ Effectiveness estimation measure (HQPP).
λ Correlation measure (RBO).
µ Constant used in RBO correlation measure.

Hypergraph

V Set of vertexes.

Model

vi Vertex of index i.
Eh Set of hyperedges.
ei Hyperedge of index i.

h(ei, vj) Reliance of vertex vj to belong to a hyperedge ei.
r(ei, vj) Density of ranking references to vj in ranking of oi and its neighbors.

HG Hypergraph model.
H Incidence matrix.

ηr(i, x) Function that assigns a weight to image x according to its position in τi.
ηf Fused affinity measure used for rank aggregation.

7.1.1 Unsupervised Ranker Selection

Given a set of available rankers for person Re-ID and no labeled data, we aim
to select a combination that produces the most effective results. The selection measure
proposed in [329] relies on the idea that rankers can be analyzed in pairs using an
effectiveness estimator and a correlation measure. It consists of attributing weight to
each pair (wp), in such a way that the ones composed by the most effective rankers and
the highest/lowest correlated ones should receive a higher score. This is presented in
Equation (7.1).

wp({R1, R2}) = γ(R1)× γ(R2)
(1 + λ(R1, R2))β

, (7.1)

where γ and λ are used to measure the effectiveness and correlation of rankers, respectively.
The γ corresponds to our proposed Hypergraph Query Performance Prediction (HQPP),
which is described in Section 7.1.2. While the effectiveness can be individually estimated for
each ranker, the correlation measure is applied to pairs. The exponent β can be employed
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to decide if the selection favors the most correlated or diverse rankers. We adopt β = −1,
since in [329] it was used for scenarios with a higher number of features.

Therefore, in our approach, a ranker pair is selected based on the score obtained
by wp. All ranker pairs are ranked according to wp (in descending order). Only the pairs
with the highest scores are selected. The user can choose the number of top combinations
to be selected.

After the selection of a pair of rankers, which is denoted by X∗
2, combinations of

other sizes are selected by performing intersection and union operations, in a procedure
detailed described in [329].

For computing the correlation between rankers, the Rank-Biased Overlap
(RBO) [358] measure is used. This measure considers the overlap between top-k lists
at increasing depths. The weight of the overlap is calculated based on probabilities defined
at each depth. It can be formally defined as follows:

λ(τi, τj, k, µ) = (1− µ)
k∑

d=1
µd−1 × |N (i, k) ∩N (j, k)|

d
, (7.2)

where N (i, k) denotes the natural neighborhood of the top-k images for oi and µ is a
constant (µ = 0.9 was used for all the experiments).

In this work, rather than the effectiveness estimations and the fusion method
employed in [329], we used a query performance prediction measure (HQPP) and a
recent manifold ranking aggregation method (LHRR) that model the ranked lists through
hypergraph structures [251]. Both are discussed in the next sub-sections.

7.1.2 Hypergraph Query Performance Prediction

Query Performance Prediction (QPP) can be broadly defined as the task of
estimating the effectiveness of a search/retrieval operation performed in response to
a query, where no labeled data is available [285]. Initially proposed for textual retrieval
systems [439, 440], the task assumed a diversified taxonomy in the literature and has been
established as a promising approach in image retrieval systems [66].

In this work, we propose to use a Hypergraph Query Performance Prediction
(HQPP) score for predicting the effectiveness of rankings produced by person Re-ID features.
The HQPP score uses a hypergraph formulation recently proposed [251] for manifold
ranking on multimedia retrieval. Hypergraphs are a robust generalization of graphs,
providing a powerful tool for capturing high-order relationships in several domains [120,
277, 298]. In opposition to traditional graph-based approaches, which represent only
pairwise relationships, hypergraphs allow connecting any number of nodes in order to
represent similarity among sets of objects [34].
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This work and the HQPP score use a hypergraph model mainly based on the
following main hypotheses and ideas:

• Similar objects present similar ranked lists and, therefore, similar hyperedges. Once
the hyperedges are represented by an incidence matrix, the product of the hyperedges
can be exploited to compute a more effective similarity measure between nodes;

• Similar objects are expected to reference each other in the same hyperedge. Therefore,
hyperedges that concentrate a high number of ranking references on a few nodes
are expected to be more effective. The Hypergraph Query Performance Prediction
(HQPP) is formally defined based on this conjecture.

Following the definition of [251], as also described in Section 2.6, a hypergraph can
be defined as a tuple HG = (V,Eh, hp), where V represents a set of vertices and Eh denotes
the hyperedge set. The set of hyperedges Eh can be defined as a family of subsets of V
such that ⋃

e∈Eh
= V . To each hyperedge ei, a positive score hp(ei) denotes the confidence

of relationships among a set of vertices established by the hyperedge ei.

While graphs are commonly represented by adjacency matrices, hypergraphs are
often represented by incidence matrices. The incidence of a hyperedge ei on a vertice vj is
represented by an incidence matrix H, defined as follows:

h(ei, vj) =

 r(ei, vj), if vj ∈ ei,

0, otherwise,
(7.3)

where h(ei, vj) denotes the reliance of the vertex vj to belong to a hyperedge ei and r(ei, vj)
is a function with a codomain in the R+ that indicates the degree to which the vertex
vj belongs to a hyperedge ei. A hyperedge ei is defined for each image oi ∈ C based on
the k-neighborhood set of oi and its respective neighbors. In this context, the function
r(ei, vj) is defined based on the density of ranking references to vj in the ranking of oi and
its neighbors. Formally, the function is defined as:

r(ei, vj) =
∑

y∈N (i,k)∧j∈N (y,k)
ηr(i, y)× ηr(y, j), (7.4)

where ηr(i, x) is a function that assigns a weight of relevance to image x according to its
position in the ranked list τi. The weight assigned to x according to its position in the
ranked list τi is defined as follows:

ηr(i, x) = 1− logk τi(x). (7.5)



Chapter 7. Hypergraph Rank Selection and Fusion (HRSF) 129

The size of the hyperedges varies according to the number of co-occurrences of
images. A high diversity of elements may indicate a high degree of uncertainty and this
information will be exploited for defining the weights of hyperedges. The weight of a
hyperedge hp(ei) denotes the confidence of relationships established among vertices by the
hyperedge.

In order to compute the weight hp(ei), we use the Hypergraph Neighborhood Set
Nh, which contains the k vertices with the greatest h(ei, ·) scores in the hyperedge ei. As
such, the hyperedge weight hp(ei) is defined as:

hp(ei) =
∑

j∈Nh(i,k)
h(i, j). (7.6)

A high-effective hyperedge is expected to present an elevated value of hp, indicating
a consistent co-occurrence of the same elements with high confidence of membership.
Therefore, the hyperedge weight hp(ei) is defined as the Hypergraph Query Performance
Prediction (HQPP) for a ranked list of image oi, which is denoted by γ:

γ(τi) = hp(ei). (7.7)

For a given ranker Ri, the γ can be computed for all the ranked lists to obtain the
value of γ(Ri) in Equation (7.1). We highlight that HQPP was used to define γ in this
work, but our approach is flexible and capable of supporting other measures.

7.1.3 Hypergraph Manifold Rank Aggregation

Once the person Re-ID features are selected, we fuse the respective produced
rankings through a recently proposed manifold learning algorithm [251]. The Log-based
Hypergraph of Ranking References (LHRR) [251], briefly described in this section, captures
the dataset manifold structure through a hypergraph-based similarity measure, which can
be used to rank aggregation tasks.

LHRR [251] exploits the hypergraph formulation discussed in the last section to
represent high-order similarity relationships encoded in the dataset manifold. Subsequently,
pairwise similarity scores are computed, allowing more effective ranking results. The
pairwise similarity is computed based on the conjecture that similar elements present
similar hyperedge representations. The similarity between hyperedges is computed based on
the product of the incidence matrix H and its transpose to encode reciprocal relationship.
A pairwise similarity matrix S is computed as:

S = (HHT ) ◦ (HT H) (7.8)
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In addition to the product of hyperedges, a Cartesian product operation is conducted
to extract useful pairwise relationships directly from the set of elements defined by the
hyperedges. Given two hyperedges eq, ei ∈ Eh, the Cartesian product between them can
be defined as:

eq × ei = {(vx, vy) : vx ∈ eq ∧ vy ∈ ei}. (7.9)

Let eq
2 denote the Cartesian product between the elements of the same hyperedge

eq, for each pair of vertices (vi, vj) ∈ eq
2 a pairwise similarity relationship cp is computed

to define the membership degrees of vi and vj. The function is formally defined as:

cp(eq, vi, vj) = hp(eq)× h(eq, vi)× h(eq, vj). (7.10)

A similarity measure based on a Cartesian product is defined through a matrix C,
with each position computed as follows:

c(i, j) =
∑

eq∈Eh∧(vi,vj)∈eq
2

cp(vi, vj). (7.11)

The pairwise similarity defined based on hyperedges and Cartesian product
operations provides complementary information. Hence, an affinity matrix W is computed
by combining both matrices as:

W = C ◦ S. (7.12)

Based on the affinity measure defined by W, a ranking procedure can be performed
for each feature giving rise to a new set of ranked lists. Next, a multiplicative rank-based
formulation is used to combine the features, exploiting an adaptive weight, which is
assigned to each query/feature according to the weight of the respective hyperedge. Let ηf

denote the fused affinity measure; each element is computed as follows considering the
top-L positions of τq:

ηf (q, i) =
m∏

f=1

(1 + hp(f, eq))
(1 + logL τq,f (i)) , (7.13)

where hp(f, eq) is the weight of hyperedge eq according to the feature f and τq,f (i) denote
the position of oi in the ranked list of oq according to the feature f . The combined affinity
measure ηf(·, ·) gives rise to a unique set of ranked lists which is re-processed by the
LHRR [251] algorithm as a single feature.
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7.2 Experimental Evaluation
This section presents the experimental results conducted to evaluate our proposed

approach. The experimental evaluation was conducted on 4 person Re-ID datasets
(described in Section 4.2.2) with sizes ranging from 14,097 to 39,902. For each dataset,
up to 28 rankers were considered of different modalities (e.g. traditional descriptors, bag
of visual words, deep learning), which consists of all the Re-ID descriptors mentioned in
Section 4.2.2, except TransReID. The large number of rankers is used with the objective
of evaluating the capacity of our selection approach. It is desirable that, if the selection is
accurate, only the most effective are selected to be fused. Also, there is a very large number
of possible combinations, when all the possible sizes are considered. With 28 rankers,
there are 268,435,456 possible combinations. Since it is impractical to execute all of them,
selection is of fundamental importance in this context. The experimental evaluation also
considers a comparison with fusion baselines and with state-of-the-art Re-ID approaches.

7.2.1 Experimental Analysis

The neighborhood size, denoted by k, is used in multiple steps of our method: for
calculating the effectiveness measure, for the correlation measure, and in the fusion stage.
Figure 7.2 presents an experiment that was conducted to evaluate the impact of k on the
Market1501 dataset, where both R1 and MAP are shown for different values of k. Notice
that the method is robust to different parameter settings. We used k = 20 for CUHK03,
Market1501, DukeMTMC, and k = 10 for Airport in all of the remaining experiments. For
the Airport dataset, a smaller k seems to be more adequate, since it has fewer images per
individual (around 4) compared to the other collections.
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Figure 7.2 – Evaluation of the impact of parameter k on MAP and R1 for Market1501 dataset.

In this work, HQPP is proposed as a measure to estimate the quality of each ranker
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in the selection stage. Aiming at assessing the use of this measure in Re-ID scenarios,
Figure 7.3 shows an experiment where each dot corresponds to a different ranker and the
MAP (a measure that uses labeled data) is compared to the HQPP performance prediction
score. As can be seen in the graph, there is a high correlation between the measures. The
Pearson correlation among the dots is 0.9678, which indicates the high effectiveness of the
selection strategy.
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Figure 7.3 – Evaluation of the HQPP measure compared to the MAP on DukeMTMC dataset.

The HRSF ranks the best combinations for each size. The user can choose the
number of top combinations to be selected. We conducted an experiment on CUHK03,
Market, and DukeMTMC (Figures 7.4, 7.5, and 7.6) where the average MAP and R1 of
the selected ranker pairs are presented as the number of selected pairs changes. Notice
that the highest MAP and R1 values are in the first position (top-1), which evinces that
the combination with the highest wp (ranked in the first position) is also the one with the
highest effectiveness.

The best combination available in the top-5 for each size is reported in Table 7.2.
We report sizes from 1 to 6 (X∗

2, ..., X∗
6) and the best combination among them (which can

be denoted just as X∗) is highlighted in bold. The best isolated ranker in each case is also
listed for comparison purposes and to facilitate the visualization of the relative MAP gain.
Notice that OSNET, OSNET-AIN, and OSNET-IBN are the most commonly selected
rankers, which evinces the effectiveness of our selection, once these rankers are among the
most effective ones. Additionally, in all cases, the proposed selection and fusion achieved
better results than the best ranker in isolation. The complementarity among the methods
can be exploited by our approach achieving gains up to +47% (MAP) after the selection
and fusion are performed. The results also indicate that gains can be obtained when
networks trained on different datasets are combined, even when the same architecture is
used.
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Figure 7.4 – Average MAP of top pairs on CUHK03 dataset.
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Figure 7.5 – Average MAP of top pairs on the Market dataset.
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Table 7.2 – The best selected combination of each size (among the top-5) is reported on each
dataset.

Dataset Comb. Selected and Fused Rankers R1 MAP MAP
Size (%) (%) R. Gain

CUHK03

Best R OSNET-AIN (MT) 28.49 27.00 —
X∗

2 OSNET-AIN (MT) + OSNET-IBN (MT) 39.04 39.69 +47.00%
X∗

3 OSNET-AIN (MT) + OSNET-IBN (MT) + OSNET (MT) 39.13 39.58 +46.59%

X∗
4

OSNET-AIN (MT) + OSNET-IBN (MT) + OSNET (MT)
+ OSNET-AIN (M) 38.02 38.80 +43.70%

X∗
5

OSNET-AIN (MT) + OSNET-IBN (MT) + OSNET (MT)
+ OSNET-AIN (M) + OSNET-IBN (M) 36.15 37.11 +37.44%

X∗
6

HACNN (MT) + OSNET-AIN (D) + OSNET-AIN (M)
+ OSNET-AIN (MT) + OSNET-IBN (MT) + OSNET (MT) 35.46 36.17 +33.96%

Market1501

Best R OSNET-AIN (MT) 69.95 43.30 —
X∗

2 OSNET-AIN (MT) + OSNET (MT) 74.32 60.89 +40.62%
X∗

3 OSNET-AIN (MT) + OSNET (MT) + OSNET-AIN (D) 75.56 62.64 +44.67%

X∗
4

OSNET-AIN (MT) + OSNET (MT) + OSNET-AIN (D)
+ OSNET-IBN (MT) 75.71 62.94 +45.36%

X∗
5

OSNET-AIN (MT) + OSNET (MT) + OSNET-AIN (D)
+ OSNET-IBN (MT) + HACNN (D) 74.00 60.69 +40.16%

X∗
6

HACNN (MT) + OSNET-AIN (D) + OSNET-AIN (MT)
+ OSNET-IBN (D) + OSNET-IBN (MT) + OSNET (MT) 73.57 59.85 +38.22%

DukeMTMC

Best R OSNET-AIN (MT) 71.14 52.69 —
X∗

2 OSNET-AIN (MT) + OSNET-IBN (MT) 76.80 68.51 +30.02%
X∗

3 OSNET-AIN (MT) + OSNET-IBN (MT) + OSNET (MT) 77.24 68.88 +30.73%

X∗
4

OSNET-AIN (MT) + OSNET-IBN (MT) + OSNET (MT)
+ RESNET (MT) 76.89 68.56 +30.12%

X∗
5

OSNET-AIN (MT) + OSNET-IBN (MT) + OSNET (MT)
+ RESNET (MT) + OSNET-AIN (M) 76.39 67.72 +28.53%

X∗
6

OSNET-AIN (MT) + OSNET-IBN (MT) + OSNET (MT)
+ RESNET (MT) + OSNET-AIN (M) + MLFN (MT) 75.90 66.96 +27.08%

Airport

Best R OSNET-AIN (MT) — 52.26 —
X∗

2 OSNET-AIN (MT) + OSNET (MT) — 52.43 +0.33%
X∗

3 OSNET-AIN (MT) + OSNET (MT) + OSNET-IBN (MT) — 53.38 +2.14%

X∗
4

OSNET-AIN (MT) + OSNET (MT) + OSNET-IBN (MT)
+ OSNET-AIN (M) — 53.91 +3.16%

X∗
5

OSNET-AIN (MT) + OSNET (MT) + OSNET-IBN (MT)
+ OSNET-AIN (M) + HACNN (MT) — 54.09 +3.50%

X∗
6

OSNET-AIN (MT) + OSNET (MT) + OSNET-IBN (MT)
+ OSNET-AIN (M) + HACNN (MT) + MLFN (MT) — 54.02 +3.37%

7.2.2 Comparison with Fusion Baselines

In order to evaluate the proposed method compared to other approaches that
both select and fuse the input features, Table 7.3 presents the proposed approach, HRSF,
compared to both early and late fusion baselines on the four datasets. In all the cases, the
same set of features, which were presented in the experimental protocol, were used. For the
early fusion methods, the default parameters were used and all the features were processed
with PCA to reduce the feature vectors to 100 components. From all the features, the
top-1000 were selected to compose the new feature vector, and the Euclidean distance
was computed. As can be seen, the results of our approach are superior in most cases
(CUHK03, Market1501, Airport) and comparable in others (DukeMTMC).

An experiment was conducted with the objective of clarifying the robustness of
HRSF to different values of k when compared to USRF. Figures 7.7 and 7.8 present the
MAP of the best combination (X∗) among top-5 for different values of k on Market and
Duke datasets, respectively. The MAP for k = 20 is the same as in Table 7.3. Notice that,
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while both methods seem comparable for k = 20, our method provided a significantly
higher MAP for other values of k. This is fundamental for unsupervised scenarios, where
the optimal k can be challenging to define.

Table 7.3 – Proposed approach compared to early and late fusion baselines.

Dataset Category Method R1 (%) MAP (%)

CUHK03
Early Fusion Laplace [112] 9.56 10.19

SPEC [421] 9.29 9.97

Late Fusion USRF [329] 38.24 39.03
HRSF (ours) 39.04 39.69

Market1501
Early Fusion Laplace [112] 82.07 61.26

SPEC [421] 77.14 54.90

Late Fusion USRF [329] 75.97 62.69
HRSF (ours) 75.71 62.94

DukeMTMC
Early Fusion Laplace [112] 59.29 43.56

SPEC [421] 59.29 43.56

Late Fusion USRF [329] 77.82 68.98
HRSF (ours) 77.24 68.88

Airport
Early Fusion Laplace [112] — 45.33

SPEC [421] — 45.32

Late Fusion USRF [329] — 39.75
HRSF (ours) — 54.09
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Figure 7.7 – Selected Combination (among top-5) on Market considering MAP.
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Figure 7.8 – Selected Combination (among top-5) on Duke considering MAP.

7.2.3 State-of-the-Art

This section presents comparisons with Re-ID state-of-the-art approaches. The
taxonomy often varies in the literature, there are different subcategories of unsupervised
Re-ID methods. However, since they are all unsupervised and often there is overlap
among the categories, we insert all of them into a single group named Unsupervised
Domain Adaptation Methods [22]. Table 7.4 presents our results compared to around 20
state-of-the-art Unsupervised Domain Adaptation Methods [22]. The gray cells with bold
values correspond to methods that have outperformed the best HRSF result.

To perform a fair comparison, it contains only methods that did not use the labels
from the target dataset for training (train on CUHK03 and test on CUHK03 is not used,
for example). Therefore, supervised and semi-supervised methods are not included. The
abbreviations in parentheses indicate the datasets used for training 7. For example, the
use of (D, M) indicates that the reported result corresponds to a training done either on
Duke or on the Market dataset. The results reported on Market were trained on Duke
and the results reported on Duke were trained on Market. None of the presented methods
were trained using labels from the target dataset. The abbreviations were omitted for
baselines that used more than 5 datasets as sources for training (CAMEL [396] and baseline
by [153]), but they can be consulted in [153], which used similar baselines and protocol.

We provided the best results for each method (considering the original papers) to
keep the evaluation as far as possible. Since the code and implementation are not available
for the majority of methods, it is not possible to provide results considering the same
sources in all cases.

Both MAP and R1 are reported in all the cases and our best results are presented
in bold. The baselines do not perform any form of selection. We highlight that our method
7 C02 = CUHK02, C03 = CUHK03, M = Market1501, D = DukeMTMC, MT = MSMT17
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receives all the rankers as input and performs a wide selection among rankers with high and
low effectiveness, which is a very challenging scenario. In contrast, none of the baselines
are required to perform any selection and the features are chosen manually. The selection
stage is an important aspect and contribution of HRSF that is hard to replicate in the
baselines. Notice that our approach achieved competitive or superior results for all the
evaluated datasets.

With the objective of facilitating the visualization of the best results in the
state-of-the-art, Table 7.5 presents the rank of the methods according to MAP and
R1. The gray cells with bold values correspond to methods that have achieved a higher
rank than HRSF. Our method achieved the best MAP on DukeMTMC and had the second
position in the other two datasets. For R1, HRSF is positioned among the top-4 in all
cases. The mean of the rank on each dataset is presented in the rightmost columns. Notice
that our method achieved one of the highest rank means among all of the methods, being
only slightly behind ISSDA [306]. The comparisons show that, besides our results being
among the best for all evaluated datasets, in some cases, other non-fusion-based methods
provided higher values than our approach. There are some possible explanations for this:

• Each dataset has different aspects (e.g., image resolution, picture angles, environment,
number of images per person, dataset size). For this reason, different methods may
perform better or worse on distinct datasets;

• The Baseline by [153] performs a multi-source training. The results reported by [153]
are based on the transfer learning of a training performed on 7 Re-ID datasets. It
is considered, by far, the largest labeled source of all the baselines, which leads to
high results, especially on Market where it is ranked as the 2nd/3rd best R1/MAP
(shown in Table 7.5);

• An idea that is exploited by some baselines is the generation of pseudo-labels. The
most promising example is ISSDA [306], which has the best results on the Market
and is well-ranked on DukeMTMC. Different from the others, ISSDA employs a
self-supervised iterative pseudo-label generation and training. However, besides the
effectiveness, the authors [306] claim that the training stage is very time-consuming
since it requires, among other aspects, the execution of a clustering algorithm.
Furthermore, ISSDA has an average ranking of 1.5 against 1.67 of our method
(Table 7.5, MAP measure); However, ISSDA does not report results on CUHK03.
Our average ranking without considering CUHK03 is also 1.5;

• The MAR [397] performs soft label generation. The applied strategy is capable of
achieving promising results for improving the DukeMTMC dataset with the R1
measure. However, apparently, the quality of the soft labels varies according to the
dataset.
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Table 7.4 – State-of-the-art comparison considering MAP (%) and R-01 (%).

Datasets
Market1501 DukeMTMC CUHK03
R1 MAP R1 MAP R1 MAP

Unsupervised Domain Adaptation Methods
ARN [181] 70.3 39.4 60.2 33.4 — —
EANet [118] 66.4 40.6 45.0 26.4 51.4 31.7
ECN [431] 75.1 43.0 63.3 40.4 — —
MAR [397] 67.7 40.0 87.1 48.0 — —
TAUDL [170] 63.7 41.2 61.7 43.5 44.7 31.2
UTAL [171] 69.2 46.2 62.3 44.6 56.3 42.3
HHL (D,M) [430] 62.2 31.4 46.9 27.2 — —
HHL (C03) [430] 56.8 29.8 42.7 23.4 — —
ATNet (D,M) [197] 55.7 25.6 45.1 24.9 — —
CSGLP (D,M) [273] 63.7 33.9 56.1 36.0 — —
ISSDA (D,M) [306] 81.3 63.1 72.8 54.1 — —
EANet (C03) [118] 59.4 33.3 39.3 22.0 — —
EANet (D,M) [118] 61.7 32.9 51.4 31.7 — —
SPGAN (D,M) [71] 43.1 17.0 33.1 16.7 — —
DAAM (D,M) [121] 42.3 17.5 29.3 14.5 — —
AF3 (D,M) [195] 67.2 36.3 56.8 37.4 — —
AF3 (MT) [195] 68.0 37.7 66.3 46.2 — —
PAUL (MT) [380] 68.5 40.1 72.0 53.2 — —
EMTL (C02+D+M) [370] 52.8 25.1 39.7 22.3 — —
CAMEL [396] 54.5 26.3 — — 31.9 —
Baseline by [153] 80.5 56.8 67.4 46.9 29.4 27.4

Unsupervised Selection and Fusion (ours)
HRSF (X∗

2) 74.32 60.89 76.80 68.51 39.04 39.69
HRSF (X∗

3) 75.56 62.64 77.24 68.88 39.13 39.58
HRSF (X∗

4) 75.71 62.94 76.89 68.56 38.02 38.80
HRSF (X∗

5) 74.00 60.69 76.39 67.72 36.15 37.11
HRSF (X∗

6) 73.57 59.85 75.90 66.96 35.46 36.17
HRSF (X∗, best result) 75.71 62.94 77.24 68.88 39.04 39.69

Table 7.5 – State-of-the-art methods ranked by their results.
Market1501 DukeMTMC CUHK03 Mean
R1 MAP R1 MAP R1 MAP R1 MAP

Unsupervised Domain Adaptation Methods
ARN [181] 5 10 10 12 — — 7.5 11
EANet [118] 11 7 16 15 2 3 9.67 8.34
ECN [431] 4 5 7 9 — — 5.5 7
MAR [397] 9 9 1 4 — — 5 6.5
TAUDL [170] 12 6 9 8 3 4 8 6
UTAL [171] 6 4 8 7 1 1 5 4
HHL (D,M) [430] 14 16 14 14 — — 14 15
HHL (C03) [430] 17 17 17 17 — — 17 17
ATNet (D,M) [197] 18 19 15 16 — — 16.5 17.5
CSGLP (D,M) [273] 13 13 12 11 — — 12.5 12
ISSDA (D,M) [306] 1 1 3 2 — — 2 1.5
EANet (C03) [118] 16 14 19 19 — — 11.67 16.5
EANet (D,M) [118] 15 15 13 13 — — 14 14
SPGAN (D,M) [71] 21 22 20 20 — — 20.5 21
DAAM (D,M) [121] 22 21 21 21 — — 21.5 21
AF3 (D,M) [195] 10 12 11 10 — — 10.5 11
AF3 (MT) [195] 8 11 6 6 — — 7 8.5
PAUL (MT) [380] 7 8 4 3 — — 5.5 5.5
EMTL (C02+D+M) [370] 20 20 18 18 — — 19 19
CAMEL [396] 19 18 — — 5 — 12 18
Baseline by [153] 2 3 5 5 6 5 4.34 4.34

Unsupervised Selection and Fusion (ours)
HRSF (X∗, best result) 3 2 2 1 4 2 3 1.67
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7.2.4 Visual Results

Some qualitative results were also elaborated to evince the quality of our obtained
results. Two different queries (o1, o2) for the same person (ID) were chosen from the
DukeMTMC dataset. Figure 7.9 presents a graph for each ranker that composes the best
combination (X∗) on DukeMTMC dataset and the HRSF result. Each dot represents a
gallery image, which is positioned in the graph according to its distance to the query
images (o1, o2). This is a challenging example because the individual is presented from
different angles (back and side) in each image, with the umbrella causing some occlusion.
Additionally, certain items visible in image o1, such as the purse and shoes, are not visible
in image o2. The idea is that, since the query images are of the same person, the distance
between them should be small and the images of the same ID should be closer to the
bottom left corner. Images obtained from different camera views are presented in different
symbols. It shows that the HRSF method was capable of reducing the distance of all
the images belonging to the same class when compared to isolated rankers (OSNET,
OSNET-IBN, OSNET-AIN).
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Figure 7.9 – Distance distribution for two query images on DukeMTMC dataset.

Figures 7.10 and 7.11 present examples of visual queries on the CUHK03 and
DukeMTMC datasets, respectively. These are also challenging examples, featuring people
at distinct angles, wearing different clothes, and with some occlusions, such as the orange
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car in the DukeMTMC example. The results are shown for the best combination obtained
by HRSF (X∗) and the rankers that compose it. The query image is presented with
green borders and the wrong results with red borders. Notice that, in these cases, beyond
selecting the best results, our approach was also capable of removing most of the incorrectly
retrieved images.

OSNET-AIN (MT)

OSNET-IBN (MT)

HRSF Fusion (X∗)

Figure 7.10 – Examples to illustrate the impact of HRSF selection and fusion on the CUHK03
dataset.
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OSNET-AIN (MT)

OSNET-IBN (MT)

OSNET (MT)

HRSF Fusion (X∗)

Figure 7.11 – Examples to illustrate the impact of HRSF selection and fusion on the DukeMTMC
dataset.
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8 Rank Flow Embedding (RFE)

Unsupervised image retrieval and semi-supervised classification are well-established
and extensively researched tasks. They present significant challenges and are interconnected,
with a wide range of applications in fields such as person re-identification [137], medical
imaging [1], and remote sensing [355], among others. In such tasks, how images are
represented and the measures used to compare them are crucial aspects [321, 446, 338].

Recently, consistent progress has been achieved in representation strategies,
especially due to the evolution of deep learning with Convolutional Neural Networks (CNN)
and Vision Transformers (ViT) models [321]. However, pairwise similarity measurements
are still widely employed which is a major limitation, particularly for being insufficient
to reveal the intrinsic relationship between images in high-dimensional spaces [123]. A
promising solution is to estimate similarities more accurately by considering the underlying
data manifold [18]. Strategies in this direction are based on the idea of exploiting the
context of other objects, which can be performed using different structures (e.g., graphs,
ranked lists, and others). This is also closer to human behavior in judging the similarity
among objects. Although there have been many advancements, most strategies are tailored
to solve a single specific problem, limiting their ability to generalize across different tasks.

In this chapter, our contribution is an unsupervised rank-based approach capable
of refining similarity information and computing a context-sensitive representation,
which can be exploited to improve the effectiveness of both unsupervised retrieval and
semi-supervised classification. We propose a novel manifold learning algorithm named
Rank Flow Embedding (RFE) [334]. The proposed method is based on different and
complementary ideas recently exploited by manifold learning approaches in order to
provide a better contextual representation of dataset objects. The algorithm computes
rank-based embeddings which are refined along the processing flow for each step. This
approach constitutes a key innovation in the sense that constitutes an unsupervised
contextual-sensitive method capable of computing a novel representation and not only a
similarity measure.

Firstly, a rank-based formulation is used to define a hypergraph model capable of
representing high-order similarity information encoded in ranked lists. The hypergraph
is used for iterative re-ranking, based on the similarity among embeddings defined
by hyperedges (h-embeddings). Next, Cartesian product operations are performed on
hyperedges to maximize their similarity relationships. While hyperedges effectively
represent regional relationships, broader similarity relationships are also relevant. In this
direction, hypergraph structures are also used to model a graph and define high-confident
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Connected Components (CCs), aiming at estimating class information of datasets. The
information encoded in the CCs is exploited for a new re-ranking step and used as class
representatives to compute low-dimensional embeddings. Such embeddings, in turn, can
be exploited for more effective semi-supervised classification tasks.

The proposed method presents various contributions and innovations regarding
related work. Among them:

• Most unsupervised context-sensitive approaches establish a novel similarity
measure [282, 253, 18], but not a novel representation. Beyond that, RFE
proposes a novel rank-based approach for learning context-sensitive representations.
More effective representations are fundamental for many applications, including
unsupervised retrieval and semi-supervised classification, scenarios in which the
method was evaluated;

• The proposed approach presents substantial innovations in the way of computing
such representations. The embeddings and their encoded similarity information are
refined through a flow of rank-based structures and operations. Although some
strategies already have been individually exploited (graphs [351], hypergraphs [18],
and connected components [249]), our work allows the sequential refinement of
similarity information along these structures. In addition, the proposed approach
includes relevant distinctions in how such structures are defined and used. More
specifically: (i) The hypergraph model used is defined based on a novel rank
normalization function, proposed in this work and named as reciprocal sigmoid; (ii)
The computation of connected components is based on a ranking of candidate edges,
which estimates the confidence of edges using the hypergraph embeddings. The
strategy consists of a novel approach proposed in this work; (iii) The use of similarity
to the connected components for defining the dimensions of novel representations is
also an innovation proposed in this chapter.

• The method can be used in scenarios where the queries are not part of the dataset
(unseen queries), which is fundamental for many real-world applications and has
been little exploited by related work in post-processing methods.

The effectiveness of the proposed method was confirmed with a wide and diversified
experimental evaluation. The experimental results were obtained on 10 public datasets,
including traditional image retrieval benchmarks and person Re-ID datasets. For each
dataset, different features were considered including CNN and recent Vision Transformers
features. For semi-supervised classification, the evaluation considered the proposed RFE
embedding classified by different Graph Convolutional Network (GCN) models. An ablation
study was also conducted in order to assess the impact of each step of the proposed
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method. The experimental evaluation also considers comparisons with other state-of-the-art
approaches on various datasets. The results demonstrate the effectiveness of the proposed
method on different tasks: unsupervised image retrieval, semi-supervised classification,
and person Re-ID.

This chapter is organized as follows: Section 8.1 presents the proposed RFE method.
Section 8.2 describes the experimental evaluation.

8.1 Proposed Method
How to effectively design context-aware measures is a challenging question, which

is closely associated with how to represent each image in terms of the collection in which is
contained. Analogous to convolution and pooling operations used on CNNs, the proposed
Rank Flow Embedding (RFE) employs subsequent rank-based operations to define more
effective contextual representations. Representations are derived from similarity to other
images modeled by rank information. Such representations, in turn, are used to derive more
effective similarity measures. Such a mechanism is repeated through a flow of distinct and
complementary operations to extract the maximum of available contextual information.

Reciprocal Rank 
Normalization

Re-Ranking by Cartesian 
Product of Hyperedges

e3

Ranked
Lists

Iterative Re-Ranking by Hypergraph Embeddings

T iterations

Graph over Hypergraph and CCs

Re-Ranking by CCs

[0.32  0.21  0.55  …   0.15 ] 
[0.27  0.19  0.48  …   0.19 ] 

Embedding for Classification

(...) 

Figure 8.1 – Overall organization of Rank Flow Embedding: in blue boxes the initial steps and
in red boxes optional steps for refining retrieval and for computing embedding for
semi-supervised classification.

Figure 8.1 presents the main steps of the proposed approach and the respective
workflow. The proposed manifold learning algorithm can be used for unsupervised
re-ranking, producing ranked lists as output retrieval results, or for representation learning,
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producing contextual vector representations. The method can be summarized by the
following steps:

1. Ranked Lists Normalization: Ranked lists are recomputed considering a sigmoid
score computed based on the reciprocal positions in the ranked lists.

2. Re-ranking by Hypergraph Embeddings: An iterative step that employs a
hypergraph structure to analyze the underlying similarity information contained in
the ranked lists. This step defines the h-embeddings and hyperedge weights, which
are used in the next steps.

3. Re-Ranking by Cartesian Product: A Cartesian product step is used to spread
the similarity information among elements in the same hyperedge.

4. Re-ranking by Connected Components: High-confident connected components
(CCs) are defined based on hypergraph structures (Step 2). The CCs are computed
based on the most confidential edges identified through the hyperedge weights. The
CCs encode class information and cause objects in the same CC to have their
similarities increased.

5. Embeddings by Connected Components: More effective embeddings are
computed for each dataset element considering their similarity to the identified
CCs. This step is directed for semi-supervised classification since a low-dimensional
embedding is obtained.

Each stage is detailed and formally defined in the next sections. In general, each
step incrementally improves the effectiveness of rank-based similarity information and
computes structures that are exploited in the next steps. While Steps 1-3 are suitable
for general retrieval tasks, Step 4 is focused on datasets with larger similarity groups, in
which information from CCs can be better exploited. Hence Step 4 is not suitable for
datasets with large numbers of very small classes. Step 5 uses the constructed structures
for computing embeddings used for classification. Besides the standard retrieval pipeline
and the embeddings for classification, rank aggregation tasks and the use of unseen queries
are also discussed.

8.1.1 Formal Definition for Rank-based Manifold and Representation Learning

The proposed RFE method aims to capture the structure of the dataset manifold by
exploiting the similarity information encoded in the set of ranked lists T . As a result, the
RFE is evaluated on two objectives: (i) computing a more effective similarity measure and
ranking result for unsupervised retrieval and; (ii) computing a more effective embedding to
represent each image, which can be used by other tasks, as semi-supervised classification.
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Regarding unsupervised manifold learning, a new and more effective set of ranked Tr

is computed with the aim of improving the effectiveness of ranking results. More formally,
we can describe the method as function fm:

Tr = fm(T ) (8.1)

The aggregation problem is also considered, in which different sets of ranked lists
{T1, T2, . . . , Td} are taken as input aiming at computing a more effective set Tr.

Regarding representation learning, the objective is to compute an embedding that
provides a more effective representation for a given object oi based on the contextual
similarity information encoded in T . Formally, it can be defined as function fe:

ei = fe(T , oi), (8.2)

where ei is a vector on a de-dimensional embedding space.

8.1.2 Rank Normalization by Reciprocal Sigmoid

In opposite to the majority of distance measures, the ranking information is
not symmetric. The increase of symmetry generally produces a positive impact on the
effectiveness of similarity information, widely exploited by reciprocal rank analysis [241,
267]. However, most of the reciprocal approaches apply linear analysis to rank positions.
In this method, we use a non-linear scoring function that assigns high weights to top-rank
positions, with a fast decay around the neighborhood size, given by k. With this objective,
a sigmoid function is applied. Additionally, a higher relevance is assigned to the original
rank position (squared) in comparison with the reciprocal rank position (linear). The new
similarity between objects oi and oj is defined by ρn:

ρn(i, j) = σ(i, j)2 × σ(j, i). (8.3)

The function σ which assigns weights according to rank positions is defined as:

σ(x, y) = 1− 1
1 + e−α(τx(y)−k/2)) , (8.4)

where α is a constant empirically evaluated in the experimental analysis. The parameter
α impacts the sigmoid-based function σ which assigns weights according to the positions
of images in ranked lists. Low values of α define a slower decay, while high values indicate
a fast decay.

Based on the measure ρn, which is computed between the objects in the top-L
positions, the ranked lists are updated with a stable sorting algorithm. Stable sorting is
used in order to keep the position in the case of a tie. An updated set of ranked lists Tn is
obtained as output.
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8.1.3 Re-Ranking by Hypergraph Embeddings

The contextual representation model used for data elements and how to exploit it
to compute more effective similarity measures is a fundamental task in rank-based manifold
learning. In this work, we use a hypergraph model based on ranking information inspired
by [251, 120]. The hypergraph establishes relations among a set of objects, allowing the
representation of high-order similarity relationships. The proposed RFE method computes
contextual embeddings based on hypergraph information and defines an iterative re-ranking
procedure based on the comparison of such embeddings.

• Hypergraph Embeddings

Formally, a hypergraph model is defined by a tuple H = (V,Eh, w), where V

represents a finite set of vertices and Eh denotes the set of hyperedges. The hyperedges set
Eh can be defined as the family of subsets of V such that ⋃

ei∈Eh
= V . A hyperedge ei is

said to be incident to a vertex vj if vj ∈ ei. For each hyperedge ei, a positive weight w(ei)
is assigned, which denotes the confidence of the relationships established by the hyperedge
ei. In this chapter, please note that in addition to adopting the hypergraph definition
described in Section 2.6, some symbols have been modified to avoid misunderstandings
that may arise in the RFE formulation. For example, to denote the hypergraph model, H
is used instead of HG.

Each vertex vi ∈ V represents an object in the collection: oi ∈ C. For each object,
a hyperedge is created by exploiting first and second-order neighborhood information.
As a reminder, the neighborhood set of an object oq, denoted as N (q, k), is defined in
Section 2.2.3. A hyperedge ei is defined based on the neighborhood set of oi and its
respective neighbors. Formally, let ox ∈ N (i, k) be a neighbor of oi and let oj ∈ N (x, k)
be a neighbor of ox, the hyperedge ei is defined as:

ei = N (i, k)
⋃

ox∈N (i,k)
N (x, k). (8.5)

Consequently, each image oi is now also represented by a hyperedge ei. Since the
number of hyperedges is equal to the number of vertices, the obtained hypergraph can be
represented by a square incidence matrix Hm of size |Eh| × |V |, where elements Hm are
defined as:

hm(ei, vj) =

 r(ei, vj), if vj ∈ ei,

0, otherwise.
(8.6)

Row i of hm tells which vertices belong to hyperedge ei and the score r(ei, vj)
indicates the degree of belonging of the vertex vj to hyperedge ei. The score r is computed
according to the number and relevance of mentions to vj in the hyperedge ei and is defined
as:

r(ei, vj) =
∑

ox∈N (i,k)∧oj∈N (x,k)
wp(i, x)× wp(x, j), (8.7)
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where wp(i, x) is a function that assigns a weight of relevance to ox according to the
position in the ranked list τi. Notice that the score r incorporates information from first
and second-order ranking references, i.e., from neighbors and neighbors of neighbors. The
weight assigned to ox according to the position of the ranked list τi is defined by a log-based
function as:

wp(i, x) = 1− logk τi(x). (8.8)

The function wp(i, x) reaches the maximum value of 1, which is assigned to the
first position of the ranked lists and corresponds to the query image. For the subsequent
positions in the ranked lists, the function decays fast.

While the hyperedge ei provides a more comprehensive contextual representation
for the object oi, it can also be susceptible to noise in certain circumstances. As it considers
second-order similarity relationships, non-relevant objects in rankings of neighbors can
generate undesired references in the hyperedge ei. With the aim of filtering out such cases,
we include a consistency check among hyperedges to obtain a more precise representation.

The main idea consists of verifying for each element in the hyperedge ei how it is
referenced by other hyperedges. Most objects in ei are expected to be relevant and compose
a consistent set of high-similarity among each other. Thus, a given relevant object oj ∈ ei

is expected to be referenced with high scores in the other hyperedges which represent most
of the elements in ei. On the other hand, a noisy and non-relevant object on ∈ ei is not
expected to be referenced in the same hyperedges.

In this way, the filtered score for a given object oj ∈ ei is computed by multiplying
scores in ei by the score of oj in hyperedges of elements referenced in ei, which can be
obtained by a matrix H computed as

H = Hm
2. (8.9)

The computation of matrix H defines the embeddings provided by the hypergraph
model to represent each object, which we denote as h-embeddings. For an object oi, its
respective h-embedding can be defined by the correspondent row of matrix H, such that:

hi = [hi1, hi2, . . . , hin], (8.10)

where hij defines the similarity of object oj in the hyperedge ei, also denoted as h(i, j).

The definition of the hypergraph also includes the confidence of each hyperedge,
given by the function w(ei). A highly effective hyperedge is expected to contain a consistent
set of vertices. Therefore, it is expected to contain only a few vertices with high score
values given by h(ei, ·). Hence, the weight w(ei) is defined as:

w(ei) =
∑

j∈Nh(i,k)
h(i, j), (8.11)
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where Nh(i, k) is a neighborhood set defined among the elements with top h(ei, ·) score
values in the hyperedge. The Nh set containing the vertices with the highest values of
h(ei, ·) is formally defined as:

Nh(q, k) = {S ⊆ eq, |S| = k ∧ ∀oi ∈ S, oj ∈ eq − S : h(q, i) > h(q, j)}. (8.12)

Based on the previous equations, we can define a function fh(·) that, given a set of
ranked lists Tn as input, computes a hypergraph H and its respective h-embeddings given
by the matrix H. The function is defined as follows:

(H,H) = fh(Tn). (8.13)

In fact, the matrix H and the weight of edges w(.) contain the main similarity
information encoded in the hypergraph model. Both structures are exploited by the
proposed RFE method and used in this work. Firstly, the information encoded in matrix
H is exploited to define a contextual similarity measure used for re-ranking. Additionally,
all the weights w(ei) are scaled using min-max normalization to keep all values within the
[0, 1] interval.

• Hypergraph-based Re-Ranking

While similar objects present similar ranked lists, it is expected that the respective
h-embeddings are also similar. Once the similarity information is encoded in the matrix H,
a similarity measure between two embeddings hi and hj can be computed by its product
hihj. This operation can be modeled for all the objects by multiplying the matrix H by
its transpose, with the objective of obtaining the affinity matrix A, defined as follows:

A = HHT . (8.14)

The elements of matrix A given by aij denote the similarity between objects oi,
oj. The matrix A contains most of the similarity information extracted based on the
hypergraph, such that it can be used to define a more effective similarity measure ρh. In
addition, the proposed measure also considers residual similarity information, given by the
original ranking position. The measure is defined as:

ρh(i, j) = aij

τi(j)
. (8.15)

Based on the similarity computed by the function ρh, an updated set of ranked
lists Th

(t) is obtained by applying a stable sorting algorithm. The ranked lists, in turn, can
be used to compute a novel hypergraph, and the procedure can be iteratively repeated,
such that the superscript (t) denotes the iteration.

After a certain number of T iterations, the set of ranked lists Th
(T ) is provided to

the function fh, which returns a matrix Ha and an updated hypergraph Ha, used in next
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steps of the rank flow. The index a is used to indicate that they were obtained based on
the affinity matrix:

(Ha,Ha) = fh(Th
(T )). (8.16)

8.1.4 Re-Ranking by Cartesian Product

A Cartesian product step is used to expand the similarity information contained in
the updated set of hyperedges Ea

h. Inspired by [251, 332], the procedure exploits high-order
similarity relationships represented on hyperedges to compute more effective pairwise
measures. Formally, given two hyperedges eq, ei ∈ Ea

h, the Cartesian product between them
can be defined as:

eq × ei = {(vx, vy) : vx ∈ eq ∧ vy ∈ ei}. (8.17)

The notation eq
2 is used aiming to indicate the Cartesian product between elements

of the same hyperedge eq, such that eq × eq = eq
2. For each pair of vertices (vi, vj) ∈ eq

2 a
pairwise relationship p : Ea

h × V × V → R+ is established.

A value p is computed based on the weight w(eq), which indicates the level of
confidence of the hyperedge that originated the association. As previously mentioned, the
weight w(ei) can be interpreted as the confidence estimations of associations encoded on
hyperedge ei. The degrees of association of vi and vj are defined by:

p(eq, vi, vj) = w(eq)× h(eq, vi)× h(eq, vj). (8.18)

A pairwise similarity measure based on the Cartesian product is defined considering
relationships contained in all the hyperedges. This formulation presents the idea of
exploiting the co-occurrence of vi and vj in different hyperedges, performing a sum of all
the values of p(·, vi, vj):

ρc(i, j) =
∑

eq∈E∧(vi,vj)∈eq
2

p(eq, vi, vj). (8.19)

Based on the similarity function ρc, a more effective set of ranked lists Tc is
computed by a stable sorting algorithm. The ranked lists set Tc is provided to the function
fh that computes an updated hypergraph and h-embeddings. The index c is used to
indicate that they were obtained after the Cartesian product step:

(Hc,Hc) = fh(Tc). (8.20)

8.1.5 Graph over Hypergraph and Connected Components

Although the hypergraph model provides an effective tool to represent regional
similarity information, it does not represent the similarity among objects in the same
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class or cluster that are more distant on the dataset manifold. In order to represent such
information, a high-confident graph is defined based on h-embeddings computed after
Cartesian product operations. The Connect Components are extracted from this graph and
are used to represent class information and the global structure of similarity relationships
encoded in the dataset.

• Graph Definition

Formally, the graph is defined as G = (V,E), such that the set of vertices V = C,
where each node represents a collection object. The set of edges E is computed based on
information provided by the hypergraph representation. Firstly, a set of candidate edges
Ec is defined based on the neighborhood set of each object as:

Ec =
⋃

q∈V

⋃
i∈N (q,k)

{(q, i)}. (8.21)

In order to select the most confident edges, the set of candidates is ranked. The
ranked list τc is defined as a permutation of the set of candidate edges Ec. The permutation
τc is the bijection of the set Ec onto the set [nk] = {1, 2, . . . , nk}, The position of the pair
(q, i) in the ranked list is denoted by τc((q, i)). The permutation is defined such that if (q, i)
is ranked before (j, l), e.g, τc((q, i)) < τc((j, l)), then sc(q, i) ≥ sc(j, l). The function sc is
a similarity measure attributed to pairs based on the similarity between h-embeddings
and confidence of the hyperedge, defined as:

sc(i, j) = hci
hT

cj
× w(ei)× w(ej), (8.22)

where the pair (i, j) identifies a pair of hyperedges ei, ej ∈ Ec
h, and Ec

h denotes a set of
hyperedges of the hypergraph Hc. Once ranked, a threshold should be established to define
the number of edges that are created. The threshold tc is defined as:

tc =
∑

eq∈Ec
h
w(eq)

2× n . (8.23)

Since the weights w(·) are within the range [0, 1] due to normalization, tc lies within
the interval [0, 0.5] due to the division by 2×n. The threshold tc is used to define the edge
set E a follows:

E = {(oq, oi) | (q, i) ∈ Ec ∧ τc((q, i)) < round(nk × tc)}, (8.24)

where round(nk × tc) is a function that returns the nearest integer that corresponds to the
number of edges that are selected as part of E. The threshold tc can be understood as a
percentage of the total number of candidate edges (nk) selected.

The process of building the graph can be understood as a function fg that receives
as input a hypergraph Hc and a matrix Hc (output of the Cartesian product) and computes
a graph G:

G = fg(Hc,Hc). (8.25)
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• Connected Components

Based on the defined graph, its respective Connected Components (CC) are
extracted. Formally, each CC is defined as a set of objects Ci. Given two objects oi,
oj ∈ Cl, there is a path (edge) between oi, oj . Search algorithms in graphs (e.g. Depth and
Breadth-First) and the Tarjan algorithm can be used to compute the CCs. The output
for the dataset is provided by the set of connected components S = {C1, C2, . . . , Cm}, such
that ⋃

Ci∈S = S and ⋂
Ci∈S = ∅.

The connected components are sets of similar objects and it is expected that such
structures encode the information of sets or classes of the dataset. Following this reasoning,
an embedding is created based on the h-embeddings of the elements that are part of it.
Given a connected component q, the cc-embedding cq is defined as:

cq =
∑

oi∈Cq

hci
. (8.26)

Once the Connected Components (CCs) encode information associated with the
representation of classes, the similarity to such CC embeddings can be exploited for
computing a more globally contextual similarity measure. In this way, a novel embedding
is computed for each object according to its similarity to the CC embeddings. Formally,
let eq be an embedding of an object of index q. The computation of the value of position i
of this vector (embedding) is done as follows:

eq[i] = hcqcT
i , (8.27)

where i identifies the connected component Ci ∈ S and ci denotes the embedding that
corresponds to this CC. In this way, the embeddings can be computed for each element of
the dataset.

• Re-Ranking by Connected Components

The re-ranking by CCs exploits information about elements in the same CC. In
this way, the elements that present high similarity values in the same CC, have their
similarities increased. The first step of this process consists of defining the k elements with
the highest values in each connected component. A neighborhood set Nc(q, k) is defined
for each element of index q considering a constant k:

Nc(q, k) = {S ⊆ C, |S| = k ∧ ∀oi ∈ S, oj ∈ C − S : cq[i] > cq[j]}. (8.28)

The ranked list τcq can be defined as the permutation of objects that have the k
highest values in the embedding cq. The permutation is defined as the bijection of the
set Nc(q, k) to the set [k] = {1, 2, . . . , k}. The position of an object oi in the ranked list
computed by the embedding of the connect component cq is defined as τcq(i). If oi is
ranked before oj in a ranked list, this means, τcq(q, i) < τcq(q, j), therefore cq[i] ≥ cq[j].
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The re-ranking by CCs exploits three complementary information: (i) the similarity
between embeddings; (ii) the object belonging to the same connected component and;
(iii) the residual information of rank position. The similarity ρe(i, j) is defined in order to
combine such information, formally defined as:

ρe(i, j) =
∑

oi,oj∈Nc(q,k)

(
1

/ (
1 +

√
τcq(q, i)2 + τcq(q, j)2

))
× eieT

j

τi(j)
. (8.29)

Based on the similarity function ρe, a set of ranked lists Te is obtained by a stable
sorting algorithm. The set of ranked lists Te is provided to the function fh that computes a
new hypergraph H and matrix H. The index e is used to indicate that they were obtained
after the step of the connected components:

(He,He) = fh(Te). (8.30)

8.1.6 Embeddings for Classification

The class information encoded in the re-ranking by CCs can be useful for other
machine learning tasks. In this way, novel representations are computed for dataset objects
and used as embeddings for semi-supervised classifiers. Given the ranked lists Te and
the hypergraph He obtained in the previous step, we obtain a graph with the updated
connected components following the same equations defined in Section 8.1.5. Thus, the
updated graph is defined as follows:

Ge = fg(He,He). (8.31)

The new connected components, considering the component c after the step of CC
(index e) for the element q, are obtained as follows:

ceq =
∑

oi∈Ceq

hei
. (8.32)

Finally, each of the positions of the embedding vector, which is going to be used
for classification, is computed as follows:

eeq [i] = heqcT
ei
, (8.33)

where the index e indicates that the variables were obtained after the re-ranking by the
connected components. The contextual embedding eeq is used as features by semi-supervised
classifiers.
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8.1.7 Unseen Queries

The formulation proposed by RFE considered a pre-existing dataset, where all the
elements of the dataset can be taken as queries. However, RFE also allows to perform
queries with elements that do not belong to the dataset, in a formulation known in the
literature as unseen queries. To make this possible, RFE follows a strategy proposed
in [378] by decoupling off-line procedures (for the whole dataset) of on-line procedures
(for the unseen query).

In an offline setting, the conventional steps of the method (normalization, re-ranking
by embeddings, Cartesian product, re-ranking by connected components) are normally
executed for all the known elements in the dataset. So, when a new external query (unseen
query) needs to be evaluated, the k most similar elements are computed for each of them
and a h-embedding is generated for the new query. The cosine distance between the query
embedding and pre-computed embeddings in the whole dataset is used to rank the unseen
query, producing the ranked lists for such elements.

8.1.8 Rank Aggregation

The RFE can also be exploited to fuse different features, in rank aggregation tasks.
Different ranked lists sets {T1, T2, . . . , Td} are used as input with the objective of computing
a more effective output set Tr. The normalization step is performed individually for each
of the rankers and the values are accumulated in a single sparse matrix Mf , once only
top-L positions are considered. New ranked lists Tf are obtained by the sorting objects
based on scores given by the matrix Mf . After that, the RFE (which can be understood
as a function fr) is executed for the ranked lists Tf and the list Tr is obtained as result:

Tr = fm(Tf ). (8.34)

8.2 Experimental Evaluation
This section discusses the experimental evaluation conducted to assess the

effectiveness of the proposed method. Section 8.2.1 describes the experimental settings.
Section 8.2.2 discusses the impact of parameters while Section 8.2.3 presents an ablation
study that includes an analysis of the impact of each step in our proposed method.
Section 8.2.4 and 8.2.5 present the results on unsupervised retrieval and semi-supervised
classification tasks, respectively. The results for unseen queries are described in Section 8.2.6.
Sections 8.2.7 and 8.2.8 compare RFE with other state-of-the-art approaches for retrieval
and classification, respectively. Finally, Section 8.2.9 presents visual analyses for both
tasks.
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8.2.1 Experimental Protocol

A broad experimental evaluation was conducted on 10 different image datasets.
The datasets vary in size from 400 to 72,000 images. In this work, there are two different
experimental scenarios: (i) unsupervised image retrieval, which was assessed on all 10
datasets; and (ii) semi-supervised image classification conducted on the Flowers and
Corel5k datasets. The retrieval category encompasses not only general-purpose image
datasets but also person Re-ID datasets (i.e., CUHK03, Market, Duke). More information
about the datasets and descriptors is presented in Section 4.2.

Due to the highly diverse aspects of each dataset, we employed different evaluation
measures in each case to enable comparisons with other approaches. In the classification
task, we used accuracy as the evaluation measure. In contrast, for the retrieval task, other
measures were used, with Mean Average Precision (MAP) being the most common. For
Re-ID datasets, the R1 (which, in this case, is equivalent to Precision@1) was included,
since it is commonly reported in the literature. For the UKbench dataset, which has the
smallest number of images per class (only 4), the NS-Score was used. The NS-Score is the
average of correct images at the top-4 positions of the ranked lists. Additional information
about effectiveness measures can be found in Section 4.1.

We adopted the evaluation protocol for each dataset based on common practices
in the literature. For most of them, all the images were considered as queries, except for
Holidays [127] and Re-ID ones, where a different protocol was adopted [429, 422, 428]. For
Holidays, there is a specific set of queries [127]. Regarding Re-ID, each dataset has a set of
queries and a corresponding gallery set [429, 422, 428], which is the set of images that are
ranked in relation to the query. The size of the ranked lists was set to L = 400 for most
datasets, while the larger ones, such as the Re-ID datasets and ALOI, used L = 2000.

The semi-supervised classification relies on Graph Convolutional Networks (GCNs),
which are stochastic. Since the results of the executions vary, we report an average of 5
executions on 10 different folds. This was adopted for our method and all the baselines.
For unsupervised retrieval, the executions are deterministic.

8.2.2 Parametric Space Analysis

Initially, an experiment was conducted to visualize the impact of parameter α in the
reciprocal sigmoid function, which is used in order to compute the rank normalization. This
is the first step of our proposed approach, described in Section 8.1.2. The normalization
mainly relies on Equation 8.4, which defines a reciprocal sigmoid function (σ). Figure 8.2
presents the values for Equation 8.4 (σ in y-axis) as the Rank Position (τx(y) in x-axis)
varies. Different values of alpha were considered. The figure reveals that α is responsible for
changing the steepness of the sigmoid curve, which refers to how quickly the output of the
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function changes as the input (i.e., the rank position) increases. However, it is challenging
to determine an appropriate value of α based solely on this plot.

Based on this issue, an analysis was conducted with the objective of identifying
default parameters. Figure 8.3 presents the impact of parameters α and T (number
of iterations) on the MAP results for two datasets (i.e., Flowers and Corel5k). The
CNN-ResNet [110] was considered for this experiment. Since we are not evaluating the
parameter k in this case, we set it to the number of elements per class (k = 100). This
is done to keep the focus of the analysis on α and T. The surface shows that the lowest
values of α and T are more appropriate. Notice that the set of parameters (T , α) = (2, 0.1)
is close to the best results in all cases (a, b, and c). Therefore, we used these values for all
subsequent experiments.
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Figure 8.2 – Impact of parameter α in function σ (Equation 8.4) as the rank position varies.
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Figure 8.3 – Impact of parameters α and T (number of iterations) on MAP for two datasets.

8.2.3 Ablation Study

An ablation study was conducted to analyze the effectiveness of each step of the
proposed method on 6 different datasets. We evaluated the retrieval results incrementally
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from Steps 1 to 4, as discussed in Section 8.1. Step (0) corresponds to the original features,
Step (1) involves ranked lists normalization, Step (2) performs re-ranking by hypergraph
embeddings, Step (3) computes re-ranking by Cartesian product, and Step (4) re-ranks by
connected components. In this case, we excluded Step (5), which generates embeddings,
as it is only necessary for semi-supervised classification.

Figure 8.4 presents the effectiveness results for every step of the proposed approach.
For each dataset, two descriptors were evaluated. The descriptors considered were
SWIN-TF [202], VIT-B16 [77], Inner Distance Shape Context (IDSC) [190], Contour
Features Descriptor (CFD) [244], OSNET-AIN [436], and OSNET-IBN [436]; which are
among the top-performing ones. The experiment was conducted using the best value of
k in each case. Notice that the values consistently increase along the performed steps,
indicating the relevance of each step. However, the datasets Holidays and Ukbench (c and
e) revealed a different behavior, where Step 4 slightly decreases the MAP. This is probably
caused by the fact that different from others, these datasets have a small number of images
per class. Therefore, all the subsequent retrieval results presented in the next sections
include Steps 1-4, except for the UKBench and Holidays datasets, which use Steps 1-3.

8.2.4 Retrieval Results

In image retrieval tasks, there are two different scenarios, which are both included
in our evaluation: (i) standard re-ranking, where only one descriptor (feature) is considered;
and (ii) rank-aggregation, which combines one or more features. For all experiments, we
considered two variations for the parameter k (size of the neighborhood set): a default
value 8 and the best value. The best k is reported considering the executions with k in
range [5, 120] with increments of 5. In general, the results revealed that our method is very
robust to the change of k.

Firstly, we evaluate RFE on Flowers, Corel5k, and ALOI datasets; which are
general-purpose image datasets that use the same protocol and evaluation measure.
Table 8.1 presents the results. For standard re-raking, a relative gain was reported
considering the improvement in relation to the original input descriptor. Since many
descriptors are combined in rank aggregation, a gain is not reported in these scenarios.
Notice that for all the cases, significant gains were obtained (up to +50.84%), and the
fusion was able to improve the results even further. The best result for each dataset is
highlighted in bold and marked with a gray background. For the three datasets, the best
MAP is above 95%.

The same set of experiments was conducted for two datasets commonly used as
image retrieval benchmarks: Holidays and UKbench. Since they have a small number
8 The default values are: k = 60 for Flowers and Corel5k; k = 5 for Holidays and UKBench; and k = 20

for all the others.
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of images per class, the best k is reported considering all the executions with k in the
range [1, 20] with increments of 1. Tables 8.2 and 8.3 present the results for Holidays and
Ukbench, respectively. As can be seen, expressive gains were obtained for both datasets
and measures. For single descriptor executions, positive gains were obtained in all the cases,
achieving gains up to +7.42%. For NS-Score, the results are very close to the maximum
value, which is 4. It is also possible to notice a correlation between MAP and NS-Score.
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Figure 8.4 – Ablation study on six datasets considering two descriptors each. The graphs present
the effectiveness values (MAP or R@40 depending on the dataset) for each step of
the proposed approach. The best value for each plot is highlighted in bold.
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Table 8.1 – Retrieval results of the proposed method (RFE) on general-purpose image datasets
(Flowers, Corel5k, and ALOI). The results are reported for MAP (%) evaluation
measure considering re-ranking (single descriptor) and rank-aggregation (fusion of
descriptors). The best values for each dataset are highlighted in bold with a gray
background.

Descriptors Original Method w/ Method w/ Relative
MAP default k best k Gain

Flowers
Re-Ranking

CNN-DPNet [51] 49.06 69.47 69.95 (k=70) +42.58%
CNN-ResNet [110] 50.00 72.32 72.62 (k=75) +45.23%
CNN-SENet [117] 40.85 61.26 61.26 (k=60) +49.96%
CNN-Xception [52] 45.27 66.65 66.81 (k=65) +47.57%
T2T-VIT24T [399] 38.03 54.99 55.03 (k=70) +44.73%
VIT-B16 (VIT) [77] 87.12 92.28 97.24 (k=80) +11.61%
SWIN-TF (STF) [202] 92.68 97.96 99.53 (k=85) +7.39%

Rank-Aggregation
ResNet+DPNet — 80.07 80.13 (k=75) —
VIT+ResNet — 94.63 97.67 (k=80) —
VIT+STF — 98.07 99.65 (k=85) —
VIT+ResNet+STF — 97.64 99.28 (k=90) —

Corel5k
Re-Ranking

CNN-DPNet [51] 63.69 81.58 85.48 (k=100) +34.22%
CNN-ResNet [110] 63.46 84.11 87.97 (k=100) +38.61%
CNN-SENet [117] 55.57 78.77 83.38 (k=100) +50.06%
CNN-Xception [52] 52.92 76.33 79.82 (k=90) +50.84%
T2T-VIT24T [399] 58.97 80.46 84.10 (k=100) +42.62%
VIT-B16 (VIT) [77] 74.19 90.02 92.04 (k=100) +24.06%
SWIN-TF (STF) [202] 73.21 93.55 95.66 (k=105) +30.70%

Rank-Aggregation
ResNet+DPNet — 87.66 91.22 (k=100) —
VIT+ResNet — 93.28 95.01 (k=100) —
VIT+STF — 95.39 96.79 (k=100) —
VIT+ResNet+STF — 95.20 96.79 (k=100) —

ALOI
Re-Ranking

CNN-DPNet [51] 79.09 94.45 96.32 (k=30) +21.79%
CNN-ResNet [110] 81.97 94.79 96.37 (k=30) +17.57%
CNN-SENet [117] 78.41 93.91 95.87 (k=30) +22.27%
CNN-Xception [52] 76.07 93.40 95.36 (k=30) +25.36%
T2T-VT24T [399] 76.90 93.46 95.36 (k=30) +24.00%
VIT-B16 (VIT) [77] 79.40 93.55 95.40 (k=30) +20.16%
SWIN-TF (STF) [202] 89.97 96.68 97.81 (k=30) +8.71%

Rank-Aggregation
ResNet+DPNet — 95.71 97.06 (k=30) —
VIT+ResNet — 95.70 97.13 (k=30) —
VIT+STF — 96.07 97.53 (k=30) —
VIT+ResNet+STF — 96.59 97.73 (k=30) —
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Table 8.2 – Retrieval results of the proposed method (RFE) on the Holidays dataset. The
results are reported for MAP (%) evaluation measure considering re-ranking
(single descriptor) and rank-aggregation (fusion of descriptors). The best values
are highlighted in bold with a gray background.

Descriptors Original Method w/ Method w/ Relative
MAP default k best k Gain

Re-Rank
CNN-DPNet [51] 70.58 74.64 75.00 (k=6) +6.25%
CNN-OLDFP [222] 88.46 89.58 90.11 (k=6) +1.87%
CNN-ResNet [110] 74.87 77.15 77.37 (k=4) +3.33%
CNN-SENet [117] 71.59 74.36 74.36 (k=5) +3.88%
CNN-Xception [52] 64.93 68.24 68.48 (k=6) +5.46%
T2T-VIT24T [399] 69.04 73.98 74.03 (k=6) +7.23%
VIT-B16 (VIT) [77] 82.40 84.75 84.75 (k=5) +2.85%
SWIN-TF (STF) [202] 85.52 87.87 87.87 (k=5) +2.75%

Rank-Aggregation
VIT+ResNet — 86.11 86.22 (k=6) —
VIT+OLDFP — 91.64 91.97 (k=4) —
ResNet+OLDFP — 88.08 88.33 (k=4) —
OLDFP+STF — 90.84 90.88 (k=4) —
VIT+ResNet+OLDFP — 89.98 90.35 (k=4) —
VIT+OLDFP+STF — 90.90 91.52 (k=4) —

Table 8.3 – Retrieval results of the proposed method (RFE) on the UKBench dataset. The results
are reported for both NS-Score and MAP evaluation measures considering re-ranking
(single descriptor) and rank-aggregation (fusion of descriptors). The best values are
highlighted in bold with a gray background.

Evaluation Measure NS-Score MAP (%)
Descriptors Original Method w/ Method w/ Relative Original Method w/ Method w/ Relative

NS-Score default k best k Gain MAP default k best k Gain
Re-Ranking Re-Ranking

CNN-DPNet [51] 3.46 3.71 3.72 (k=6) +7.42% 90.47 94.58 94.67 (k=6) +4.65%
CNN-OLDFP [222] 3.85 3.93 3.93 (k=5) +2.24% 97.74 98.92 98.92 (k=5) +1.21%
CNN-ResNet [110] 3.67 3.85 3.85 (k=6) +4.94% 94.54 97.31 97.31 (k=5) +2.93%
CNN-SENet [117] 3.56 3.76 3.76 (k=5) +5.52% 92.15 95.55 95.55 (k=5) +3.69%
CNN-Xception [52] 3.49 3.75 3.75 (k=6) +7.60% 90.83 95.35 95.35 (k=6) +4.99%
T2T-VIT24T [399] 3.48 3.75 3.75 (k=5) +7.78% 90.26 95.40 95.40 (k=5) +5.69%
VIT-B16 [77] 3.62 3.80 3.80 (k=6) +5.00% 93.28 96.26 96.26 (k=5) +3.19%
SWIN-TF [202] 3.86 3.94 3.94 (k=6) +2.01% 97.93 98.98 99.01 (k=6) +1.10%

Rank-Aggregation Rank-Aggregation
VOC+OLDFP — 3.90 3.90 (k=6) — — 98.22 98.22 (k=5) —
VOC+ResNet — 3.92 3.93 (k=6) — — 98.76 98.79 (k=6) —
VOC+VIT-B16 — 3.92 3.92 (k=6) — — 98.69 98.77 (k=7) —
OLDFP+ResNet — 3.94 3.95 (k=6) — — 99.13 99.13 (k=5) —
OLDFP+VIT-B16 — 3.93 3.94 (k=6) — — 98.94 98.99 (k=6) —
ResNet+VIT-B16 — 3.91 3.91 (k=5) — — 98.45 98.45 (k=5) —
OLDFP+SWIN-TF — 3.97 3.97 (k=6) — — 99.53 99.57 (k=6) —
VOC+OLDFP+ResNet — 3.94 3.94 (k=6) — — 99.07 99.07 (k=5) —
VOC+OLDFP+VIT-B16 — 3.94 3.95 (k=6) — — 99.09 99.13 (k=6) —
VOC+ResNet+VIT-B16 — 3.94 3.95 (k=6) — — 99.13 99.15 (k=6) —
OLDFP+ResNet+VIT-B16 — 3.94 3.94 (k=6) — — 99.07 99.08 (k=6) —
OLDFP+ResNet+SWIN-TF — 3.96 3.96 (k=6) — — 99.40 99.41 (k=6) —
VOC+OLDFP+ResNet+VIT-B16 — 3.95 3.95 (k=6) — — 99.20 99.28 (k=7) —
VOC+OLDFP+VIT-B16+SWIN-TF — 3.96 3.96 (k=6) — — 99.36 99.43 (k=6) —

We also assessed RFE for person Re-ID (i.e., CUHK03, Market, and Duke datasets).
These datasets are usually more challenging. They involve identifying and matching
individuals across different camera views or even across different locations and times.
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People’s appearances can vary significantly due to changes in lighting, pose, clothing,
and accessories. These factors can make it difficult to match the same person in different
images. Table 8.4 reports the results on these datasets. Since R1 is also commonly used
for Re-ID evaluation, it was also included. The R1 corresponds to the first value of the
CMC (Cumulative Matching Characteristics) curve, which indicates the number of ranked
lists that have an image that corresponds to the same individual in the first position after
the query image (which, in this case, is equivalent to Precision@1).

The best k is reported considering all the executions with k in the range [5, 50]
with increments of 5. Notice that significant gains were obtained in all the cases (up to
+65.88%), which were also improved by the rank-aggregation in most cases. These results
reveal the potential of our approach in dealing not only with general-purpose scenarios
but also with other challenging and more specific ones such as Re-ID.

Table 8.4 – Retrieval results of the proposed method (RFE) on three person Re-ID datasets
(CUHK03, Market, and Duke). The results are reported for both R1 and MAP
evaluation measures considering re-ranking (single descriptor) and rank-aggregation
(fusion of descriptors). The best values are highlighted in bold with a gray background
(MAP as the criteria).

Evaluation Measure R1 (%) MAP (%)
Descriptors Original Method w/ Method w/ Relative Original Method w/ Method w/ Relative

R1 default k best k Gain MAP default k best k Gain

CUHK03

Re-Ranking Re-Ranking
HACNN [177] 8.36 12.80 12.80 (k=20) +53.03% 9.33 14.27 14.41 (k=15) +54.42%
MLFN [39] 9.47 13.69 13.79 (k=15) +45.63% 9.85 15.14 15.18 (k=15) +54.11%
OSNet-AIN [436] 26.39 36.67 36.89 (k=15) +39.76% 26.69 39.12 39.24 (k=15) +47.00%
OSNet-IBN [436] 20.31 29.65 29.82 (k=15) +46.85% 20.50 31.94 32.02 (k=15) +56.18%
ResNet50 [110] 12.24 17.84 18.37 (k=15) +50.15% 12.74 19.77 19.77 (k=20) +55.18%

Rank-Aggregation Rank-Aggregation
OSNet-AIN+OSNet-IBN — 36.19 37.16 (k=15) — — 38.51 39.13 (k=15) —
OSNet-AIN+ResNet50 — 33.54 33.54 (k=20) — — 35.40 35.40 (k=20) —
OSNet-IBN+ResNet50 — 29.56 29.56 (k=20) — — 31.40 31.40 (k=20) —
OSNet-AIN+OSNet-IBN+ResNet50 — 33.91 33.91 (k=20) — — 35.94 35.94 (k=20) —

Market

Re-Ranking Re-Ranking
HACNN [177] 49.23 52.20 52.82 (k=15) +7.30% 22.29 31.93 32.10 (k=25) +44.02%
MLFN [39] 46.59 49.58 49.76 (k=15) +6.82% 21.11 30.65 30.89 (k=25) +46.30%
OSNet-AIN [436] 69.95 70.99 70.99 (k=20) +1.49% 42.33 57.38 58.21 (k=25) +37.52%
OSNet-IBN [436] 66.45 67.25 67.90 (k=15) +2.19% 36.31 52.71 53.23 (k=25) +46.60%
ResNet50 [110] 46.59 51.72 51.90 (k=15) +11.41% 21.92 34.09 34.81 (k=25) +58.82%

Rank-Aggregation Rank-Aggregation
OSNet-AIN+OSNet-IBN — 72.42 72.42 (k=20) — — 58.55 59.51 (k=25) —
OSNet-AIN+ResNet50 — 67.34 67.34 (k=20) — — 52.19 52.88 (k=25) —
OSNet-IBN+ResNet50 — 64.61 64.61 (k=20) — — 49.45 50.40 (k=25) —
OSNet-AIN+OSNet-IBN+ResNet50 — 68.20 68.53 (k=15) — — 54.35 55.11 (k=25) —

Duke

Re-Ranking Re-Ranking
HACNN [177] 42.19 50.31 50.99 (k=25) +20.85% 24.37 39.32 40.42 (k=25) +65.88%
MLFN [39] 48.65 56.06 56.73 (k=25) +16.61% 28.00 44.00 45.39 (k=25) +62.13%
OSNet-AIN [436] 71.14 75.67 76.84 (k=25) +8.01% 51.68 66.60 68.31 (k=30) +32.19%
OSNet-IBN [436] 67.41 73.88 75.00 (k=25) +11.25% 44.66 63.60 64.81 (k=25) +45.12%
ResNet50 [110] 52.29 60.50 62.57 (k=30) +19.66% 31.00 48.77 50.67 (k=25) +63.45%

Rank-Aggregation Rank-Aggregation
OSNet-AIN+OSNet-IBN — 76.21 77.69 (k=25) — — 67.46 69.21 (k=25) —
OSNet-AIN+ResNet50 — 72.80 74.55 (k=30) — — 63.71 65.50 (k=25) —
OSNet-IBN+ResNet50 — 72.26 74.10 (k=30) — — 62.65 64.09 (k=25) —
OSNet-AIN+OSNet-IBN+ResNet50 — 74.69 76.17 (k=25) — — 65.74 67.02 (k=30) —
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8.2.5 Classification Results

The proposed approach is capable of generating embeddings that can be utilized in
various applications beyond retrieval. In this section, we employ RFE for semi-supervised
classification on two general-purpose image datasets (i.e., Flowers and Corel5k). The
process of embedding generation is unsupervised and encompasses all the steps of the
proposed approach (from 1 to 5). Our hypothesis is that the RFE embeddings can be used
to train semi-supervised classifiers, resulting in improved accuracy. We employed recent
Graph Convolutional Neural Networks (GCNs) models along with the traditional Support
Vector Machine (SVM) with a polynomial kernel. The GCNs can operate on graphs, and
they have become increasingly popular due to their ability to handle complex relationships
between data points, which cannot be easily modeled using traditional machine learning
methods. The RFE embeddings were evaluated by applying z-score normalization, followed
by concatenation with the original features. Subsequently, dimensionality reduction to 200
dimensions was performed using Principal Component Analysis (PCA) 9.

Tables 8.5 and 8.6 present the results on Flowers and Corel5k datasets, respectively.
In all the classifiers, the default parameters were used, proposed by the original authors.
The GCNs were trained considering 50 epochs and k = 40 for the input kNN graphs. Our
study compares the accuracy of classifiers that used the original features with those that
used embeddings generated by the proposed RFE. We highlight in bold the best result
for each classifier and in red the best for each dataset. The results demonstrate that the
embeddings generated by our proposed approach are effective and have the potential to
improve results across various classifiers. Notably, positive gains were obtained for all
methods and features.

Table 8.5 – Semi-supervised classification (accuracy) on Flowers dataset for different features.
We compare the training that used the original features with the one that used
embeddings generated by RFE. The best result for each classifier is highlighted in
bold and the best for each dataset is highlighted in red.

GCN
Mode Descriptor SVM [54] NET [146] GAT [344] SGC [363] APPNP [147] ARMA [30]

ResNet [110] 82.467% 69.386% 71.211% 78.649% 72.186% 60.475%
Original DPNet [51] 79.812% 72.954% 18.874% 76.292% 70.539% 56.539%

SENet [117] 76.193% 68.895% 63.18% 72.835% 66.797% 60.649%
RFE ResNet [110] 82.565% 82.593% 82.966% 84.948% 83.974% 75.160%

Embeddings DPNet [51] 80.131% 80.003% 41.237% 81.603% 81.029% 67.784%
SENet [117] 76.716% 76.618% 73.454% 77.559% 77.260% 70.382%

Relative ResNet [110] +0.12% +19.03% +16.51% +8.01% +16.33% +24.28%
Gain DPNet [51] +0.40% +9.66% +118.49% +6.96% +14.87% +19.89%

SENet [117] +0.69% +11.21% +16.26% +6.49% +15.66% +16.05%

9 Z-Score normalization and PCA were performed with scikit-learn using default parameters.
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Table 8.6 – Semi-supervised classification (accuracy) on Corel5k dataset for different features.
We compare the training that used the original features with the one that used
embeddings generated by RFE. The best result for each classifier is highlighted in
bold and the best for each dataset is highlighted in red.

GCN
Mode Descriptor SVM [54] NET [146] GAT [344] SGC [363] APPNP [147] ARMA [30]

ResNet [110] 89.504% 78.066% 87.68% 90.288% 86.679% 73.621%
Original DPNet [51] 87.662% 84.733% 18.349% 87.389% 85.653% 72.883%

SENet [117] 88.613% 88.627% 87.292% 90.404% 88.76% 83.447%
RFE ResNet [110] 89.602% 90.008% 91.003% 91.54% 91.507% 89.212%

Embeddings DPNet [51] 87.933% 89.488% 52.374% 90.515% 91.061% 85.135%
SENet [117] 88.776% 91.299% 91.441% 91.97% 92.198% 90.924%

Relative ResNet [110] +0.11% +15.3% +3.79% +1.39% +5.57% +21.18%
Gain DPNet [51] +0.31% +5.61% +185.43% +3.58% +6.31% +16.81%

SENet [117] +0.18% +3.01% +4.75% +1.73% +3.87% +8.96%

8.2.6 Unseen queries

Encountering scenarios where query images are not included in the dataset being
evaluated is not uncommon. These are referred to as external or unseen queries. To assess
the proposed approach in such cases, we conducted experiments on the Flowers, Corel5k,
and ALOI datasets, which are presented in Table 8.7.

We generated a set of unseen queries by randomly removing elements from the
original dataset. To ensure a balanced analysis, we generated 10 samples per dataset, with
each sample containing one element from each class. The reported MAP (both original
and RFE) reflects the effectiveness of the approach in handling unseen queries, where the
improvement is visible for all datasets and features.

Table 8.7 – Evaluation of RFE on unseen queries considering MAP (%). The reported results
are the average of 10 executions, each conducted on a different set of unseen queries
randomly sampled from the dataset.

Dataset Descriptor Original RFE

Flowers
CNN-ResNet 52.3226 65.4526
VIT-B16 89.0063 93.3823
SWIN-TF 93.0988 95.3603

Corel5k
CNN-ResNet 63.2227 76.3823
VIT-B16 75.2124 84.8642
SWIN-TF 72.3914 82.5962

ALOI
CNN-ResNet 82.5268 88.4239
VIT-B16 80.1258 85.8109
SWIN-TF 89.7562 93.1862

8.2.7 Comparison with State-of-the-art for Unsupervised Image Retrieval

This section aims to present the comparisons of the best results obtained by the
proposed RFE (reported in Section 8.2.4) in relation to recent baselines and state-of-the-art
approaches on unsupervised image retrieval.
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Table 8.8 presents the results for ORL and MPEG-7 datasets, which are two
traditional benchmark datasets. These datasets are used for comparison with different
diffusion methods. The ORL consists of images of faces, while the MPEG-7 is composed of
images of shapes and contours. In order to keep consistency with the baselines, the same
features were used for all the approaches: the IDSC [190] for MPEG-7 and raw images
for ORL. The result with the original features is reported as “Our Baseline”. The best
values are highlighted in bold for each dataset. Notice that RFE achieved the best result
for ORL and comparable ones for MPEG-7.

Table 8.8 – State-of-the-art (SOTA) comparison with other variants of diffusion processes on the
ORL (R@15) and the MPEG-7 (R@40) datasets.

Methods ORL MPEG-7
Baseline [18] 62.35 85.40
SD [347] 71.67 83.09
LCDP [383] 74.25 89.45
TPG [385] 73.90 89.06
MR [434] 77.05 89.26
MR* [434] 77.58 92.61
GDP [74] 77.42 90.96
RDP (Y=I) [18] 78.53 93.77
RDP (Y=W) [18] 79.27 93.78

Our Baseline 74.32 85.40
RFE 90.62 93.54

(our method) (k=10) (k=20)

The state-of-the-art comparison also encompasses the Flowers, Corel5k, and ALOI
datasets; which is shown in Table 8.9. Our method outperformed all other approaches,
achieving the best results on all three datasets. The values reveal the effectiveness of RFE
for both small and large datasets (Flowers and ALOI contain 13060 and 10200 images,
respectively), with MAP always above 96.79%. This is a really significant result since
the baselines also consider rank-aggregation of different features, especially Unsupervised
Genetic Algorithm Framework for Rank Selection and fusion (UGAF-RSF) [327] and
Unsupervised Selective Rank Fusion (USRF) [329] that combine more than 10 features.

Tables 8.10 and 8.11 compare the RFE results to state-of-the-art methods on
Holidays and Ukbench datasets, respectively. These datasets are widely used as benchmarks
for many retrieval algorithms. We compare RFE to at least 15 approaches for each dataset.
Notice, that the results achieved by RFE are higher than the baselines in both cases. We
achieved an NS-Score of 3.97 (the maximum possible value is 4.00).

Table 8.12 presents the results of different approaches on the Re-ID datasets
considering both R1 and MAP. Our results (RFE) are marked with a gray background
and correspond to the best ones according to Table 8.4. The abbreviations in parentheses
indicate the datasets used for training (C03 = CUHK03, M = Market1501, D =
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DukeMTMC, MT = MSMT17). For example, the use of (D, M) indicates that the
reported result corresponds to training done either on Duke or on the Market dataset.

Table 8.9 – State-of-the-art comparison on Flowers, Corel5k, and ALOI datasets (MAP %).

Method Flowers Corel5k ALOI
CPRR [332] — — 76.90
RL-Sim [240] — — 78.84
RL-Recom [335] — — 80.35
LHRR [251] — 73.34 88.42
BFSTree [253] — 53.00 91.15
RDPAC [252] — 56.00 91.31
UGAF-RSF [327] 80.92 91.45 —
USRF [329] 81.71 90.32 —
RFE (Our Method) 99.65 96.79 97.73

Table 8.10 – State-of-the-art comparison on Holidays dataset (MAP).

MAP for state-of-the-art methods
Jégou Tolias Paulin Qin Zheng

et al. [127] et al. [315] et al. [238] et al. [268] et al. [425]
75.07% 82.20% 82.90% 84.40% 85.20%

Sun Zheng Pedronette Arandjelovic Li
et al. [299] et al. [423] et al. [241] et al. [12] et al. [178]

85.50% 85.80% 86.16% 87.50% 89.20%

Razavian Pedronette Gordo Valem Valem
et al. [271] et al. [253] et al. [104] et al. [329] et al. [328]

89.60% 90.02% 90.30% 90.51% 90.51%

Liu Pedronette Pedronette Yu Berman
et al. [203] et al. [251] et al. [252] et al. [398] et al. [26]

90.89% 90.94% 91.25% 91.40% 91.80%

RFE (Our Method)
91.97%

Table 8.11 – State-of-the-art comparison on UKBench dataset (NS-Score).

N-S-Scores for state-of-the-art methods
Qin Zhang Zheng Bai Xie

et al. [267] et al. [413] et al. [424] et al. [16] et al. [371]
3.67 3.83 3.84 3.86 3.89

Lv Liu Pedronette Bai Liu
et al. [210] et al. [203] et al. [241] et al. [20] et al. [159]

3.91 3.92 3.93 3.93 3.93

Valem Bai Valem Valem Chen
et al. [328] et al. [17] et al. [329] et al. [327] et al. [50]

3.93 3.94 3.94 3.95 3.96

RFE (Our Method)
3.97
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The results reported on Market were trained on Duke and the results reported on
Duke were trained on Market. None of the presented methods were trained using labels of
the target dataset. The abbreviations were omitted for multi-source baselines, but they
can be consulted in their papers. The best results for each dataset are highlighted in
bold. Notice, that our results are among the best in all the cases and are above all of the
baselines for DukeMTMC considering MAP.

Table 8.12 – State-of-the-art (SOTA) comparison for person Re-ID datasets considering MAP
(%) and R-01 (%). The abbreviations in parentheses indicate the datasets used for
training (C03 = CUHK03, M = Market1501, D = DukeMTMC, MT = MSMT17).
For example, the use of (D, M) indicates that the reported result corresponds to
training done either on Duke or on the Market dataset. The results reported on
Market were trained on Duke and the results reported on Duke were trained on
Market. None of the presented methods were trained using labels of the target
dataset.

Datasets
Method Year Market1501 DukeMTMC CUHK03

R1 MAP R1 MAP R1 MAP
Unsupervised Methods

ARN [181] 2018 70.3 39.4 60.2 33.4 — —
EANet [118] 2018 66.4 40.6 45.0 26.4 51.4 31.7
TAUDL [170] 2018 63.7 41.2 61.7 43.5 44.7 31.2
ECN [431] 2019 75.1 43.0 63.3 40.4 — —
UTAL [171] 2019 69.2 46.2 62.3 44.6 56.3 42.3
SSL [189] 2020 71.7 37.8 52.5 28.6 — —
HCT [402] 2020 80.0 56.4 69.6 50.7 — —
CAP [353] 2021 91.4 79.2 81.1 67.3 — —
IICS [376] 2021 89.5 72.9 80.0 64.4 — —

Domain Adaptive Methods
HHL (D,M) [430] 2018 62.2 31.4 46.9 27.2 — —
HHL (C03) [430] 2018 56.8 29.8 42.7 23.4 — —
ATNet (D,M) [197] 2019 55.7 25.6 45.1 24.9 — —
CSGLP (D,M) [273] 2019 63.7 33.9 56.1 36.0 — —
ISSDA (D,M) [306] 2019 81.3 63.1 72.8 54.1 — —
ECN++ (D,M) [432] 2020 84.1 63.8 74.0 54.4 — —
MMCL (D,M) [348] 2020 84.4 60.4 72.4 51.4 — —

Cross-Domain Methods (single-source)
EANet (C03) [118] 2018 59.4 33.3 39.3 22.0 — —
EANet (D,M) [118] 2018 61.7 32.9 51.4 31.7 — —
SPGAN (D,M) [71] 2018 43.1 17.0 33.1 16.7 — —
DAAM (D,M) [121] 2019 42.3 17.5 29.3 14.5 — —
AF3 (D,M) [195] 2019 67.2 36.3 56.8 37.4 — —
AF3 (MT) [195] 2019 68.0 37.7 66.3 46.2 — —
PAUL (MT) [380] 2019 68.5 40.1 72.0 53.2 — —

Cross-Domain Methods (multi-source)
CAMEL [396] 2017 54.5 26.3 — — 31.9 —
EMTL [370] 2018 52.8 25.1 39.7 22.3 — —
Baseline by [153] 2019 80.5 56.8 67.4 46.9 29.4 27.4

Our Proposed Method
Our Method 72.42 59.51 77.69 69.21 36.89 39.24
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8.2.8 Comparison with State-of-the-art for Semi-Supervised Image
Classification

This section compares the semi-supervised image classification results reported in
Section 8.2.5 to various state-of-the-art approaches. Table 8.13 presents the comparisons
considering different features (CNN-ResNet [110] and CNN-SENet [117]). The best result
for each feature and dataset is highlighted in bold. The gray rows indicate the results
that correspond to our method. We employed the same protocol adopted for RFE in all
baselines: 5 executions of 10 folds. The only exception is CoMatch [169], where only 3
executions were reported for Corel5k due to the long time required to train this approach.
Different from others, CoMatch takes images as input. However, it uses CNN-ResNet as
its backbone.

Table 8.13 – Accuracy comparison (%) for baselines on Flowers and Corel5k datasets. We
compared our approach with semi-supervised classification baselines. The methods
are compared with different input features. The results of our method are highlighted
with a gray background; the best results for each pair of features and dataset are
marked in bold.

Method Input Flowers Corel5k
CoMatch [169] Images 82.55 85.70
kNN 63.67 76.80
SVM [54] 80.54 88.73
OPF [8] 71.77 83.56
SL-Perceptron 75.44 83.56
ML-Perceptron 78.88 87.10
PseudoLabel+SGD [162] 82.69 89.76
LS+kNN [433] ResNet 73.49 83.98
LS+SVM [433, 54] Features 73.53 83.26
LS+OPF [433, 8] 72.66 82.32
LS+SL-Perceptron [433] 72.34 82.38
LS+ML-Perceptron [433] 73.03 82.53
GNN-LDS [90] 54.98 62.69
GNN-KNN-LDS [90] 79.32 88.94
WSEF [264] 85.12 91.68
RFE (Our Method) 84.95 91.54

kNN 48.71 58.78
SVM [54] 73.30 85.89
OPF [8] 64.00 81.33
SL-Perceptron 71.84 82.28
ML-Perceptron 72.62 86.90
PseudoLabel+SGD [162] 76.87 89.85
LS+kNN [433] SENet 58.05 72.16
LS+SVM [433, 54] Features 59.84 72.79
LS+OPF [433, 8] 59.25 72.20
LS+SL-Perceptron [433] 59.27 72.19
LS+ML-Perceptron [433] 59.39 72.24
GNN-LDS [90] 52.24 65.80
GNN-KNN-LDS [90] 73.69 89.95
WSEF [264] 76.16 89.74
RFE (Our Method) 77.56 92.20
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For all the methods, we considered the default parameters and implementation
provided by the original authors or the one in Python Sklearn. Regarding parameters, we
used k = 20 for methods that require a size for the neighborhood set (i.e., kNN, GNN-LDS,
GNN-KNN-LDS, and WSEF). The Label Spreading (LS) [433] was used combined with
different classifiers once it can be used to generate pseudo-labels for further expanding the
training set. The results achieved by RFE are the best ones for the SENet features and
very comparable to the best for the ResNet features.

8.2.9 Visual Analysis

In addition to the numerical analyses, qualitative experiments are also important
for understanding the results achieved by the proposed approach. For better visualization
of the improvements provided by RFE in the semi-supervised classification experiments,
Figure 8.5 illustrates feature spaces on Flowers dataset with CNN-ResNet descriptor for
three different cases: (a) features extracted by the CNN-ResNet descriptor; (b) GCN-Net
output features after being trained on the CNN-ResNet features; and (c) GCN-Net output
features after being trained on the CNN-ResNet features combined to the RFE embeddings.
The t-SNE method was used to compute the coordinates in the 2D space. While each
dot represents a different element of the dataset, each combination of color and shape
corresponds to a distinct class. From (a) to (b), it is evident that training with GCN was
able to improve the separability between classes due to the ability of GCN to leverage
the structure of graph data to aggregate and transform neighboring information. From
(b) to (c), the separability was further enhanced by the RFE embeddings, which encode
the similarity of the elements to the connected components which were computed based
on different contextual information, including the hypergraph structure. Notice that (c)
presents the best correspondence among the visual groups formed by the dots and the
original dataset classes. This evinces our hypothesis that the RFE embeddings improve
the classification of GCNs.

Experiments were also conducted to visualize the performance of RFE in retrieval
tasks. Figure 8.6 presents examples of ranked lists before and after the execution of our
proposed method. These results were obtained on different datasets (CNN-ResNet for
Flowers and Corel5k; and OSNET-AIN for DukeMTMC) with the default parameters and
k. The query images are presented with green borders and the incorrect ones with red
borders. The examples cover diverse scenarios, encompassing challenges such as similar
images between different classes, occlusions, lightning, and viewpoint variances. Despite
these challenges, RFE clearly demonstrated significant improvements across all queries.
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Figure 8.5 – Feature space illustrations computed by t-SNE on the Flowers dataset with the
CNN-ResNet descriptor. It shows the (a) original feature space, (b) feature space
obtained with the GCN, and (c) feature space obtained by the GCN using the RFE
(our proposed approach) embeddings.
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(a) Flowers Dataset

(b) Corel5k Dataset

(c) DukeMTMC Dataset
Figure 8.6 – Examples of ranked lists before and after RFE was applied for three datasets. Query

images are highlighted with green borders and wrong results are with red borders.
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9 Contextual Manifold Learning on Graph
Convolutional Networks (Manifold-GCN)

Graph Convolutional Networks (GCNs) present an effective and emerging
representation learning strategy. One of the core concepts involves convolution operations
in a non-Euclidean domain defined by graph-structured data. In practice, a new
representation is learned by aggregating feature representations from the graph-based
neighborhood [410, 146]. The graph data is inherently available in some domains but needs
to be inferred or constructed in others [90]. Consequently, several methods have been
proposed for graph-structured data as citation datasets [344, 363, 147, 30, 45, 172, 19], but
only a few approaches have been proposed for image and multimedia data [42, 379, 193, 405].
In scenarios where the data are not inherently represented as graphs, such structures can
be constructed to reflect similarity relationships. In most cases, the most direct approach
is to create a k-nearest neighbor graph. However, the GCN models are highly sensitive
to the input graph, in the sense that a more effective classification depends on the edges
between nodes of the same class. Therefore, defining a graph capable of encoding contextual
information and representing more effective similarity relationships assumes a key role.

In this scenario, this chapter presents a novel GCN-based approach, the
Manifold-GCN, for image classification in semi-supervised scenarios, where labeled data is
limited. Deep features are extracted for image representation employing transfer learning
by CNNs and Vision Transformers (ViT) models. Ranking structures are computed and
used as input by unsupervised manifold learning algorithms based on these extracted
features. Manifold learning approaches aim to capture and exploit the intrinsic manifold
structure to compute a more effective distance/similarity measure [133]. In this work, we
consider recent unsupervised manifold learning methods to provide more effective similarity
measures using rank-based formulations.

The manifold learning methods produce more effective ranking results, i.e., improved
neighbor sets, which are exploited for building the input graph of the GCN model. In
addition to constructing kNN graphs, the use of reciprocal kNN graphs is proposed. The
main hypothesis of this chapter is that the use of manifold learning to improve the graph
structure provided as the input of the Graph Convolutional Network (GCN) can further
improve the classification results obtained. This work proposes and validates this hypothesis
on different manifold learning and recent GCN approaches.

We can highlight the main contributions of our work as follows: (i) novel ways
to learn the graph structures that improve GCN image classification; (ii) the use of
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reciprocal kNN graph in order to provide a more reliable graph for GCNs. There are very
few works that employ kNN graphs [90] or manifold learning [45] for GCNs. In [90] the
traditional kNN graph is employed and [45] uses manifold learning, but in both works
no image data is considered. Other few works have recently employed GCN models on
image classification [42, 379, 193, 405]. However, to the best of our knowledge, this is the
first work that exploits both manifold learning and reciprocal kNN graphs for GCN-based
semi-supervised image classification. In addition, it combines powerful contextual modeling
given by GCN models with effective representations given by CNNs and ViT features.

There are many applications of the proposed approach. The improvement of
classification results using GCNs may benefit many different areas, especially when there is
limited labeled data. For example: person re-identification [137] and diagnosis of diseases [1].
The Manifold-GCN can be employed in scenarios where the graph data is not previously
available by building the graph from the features and employing manifold learning.

A wide experimental evaluation was conducted in order to assess the effectiveness
of the proposed approach. The experimental results were obtained on 3 public datasets. We
evaluated the impact of different GCN models combined with different manifold learning
methods. The experimental results demonstrate the effectiveness of the proposed approach
and the gains of combining manifold learning and reciprocal kNN graphs.

This chapter is organized as follows: Section 9.1 describes our proposed approach,
the Manifold-GCN. Section 9.2 reports the experimental evaluation.

9.1 Proposed Method
In this work, we propose the Manifold-based Graph Convolutional Network

(Manifold-GCN), a semi-supervised framework based on the combined use of manifold
learning and GCN models for image classification in scenarios with limited labeled data. The
initial representations were obtained by deep features extracted by CNN and ViT models
trained on a transfer learning setting. Given the representations, the central idea consists of
exploiting contextual similarity measures given by unsupervised manifold learning methods
for computing a more effective graph. The similarity information encoded in the graph is
exploited by GCN models for learning novel representations used for classification.

Figure 9.1 illustrates the main steps that compose our strategy. Each step is
identified by a number (top of boxes) and a function (bottom of boxes). In (1), a feature
vector is extracted for representing each image. In (2), representations are processed in order
to obtain ranked lists, which encode the similarity information. Unsupervised manifold
learning methods are used to analyze contextual similarity information and compute
more effective rankings in (3). In (4), the outputs of the manifold learning methods
are modeled as kNN graphs or reciprocal kNN graphs. In (5), the graph and features
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are jointly provided to the GCN models for semi-supervised training. The embeddings
obtained for each of the elements of the dataset can be used for classification, through
a softmax operation. Each of the main steps of the framework is described in the next
subsections.

kNN or
Reciprocal
kNN Graph 

Feature Vectors 
[0.05, 0.80, ..., 0.04, 0.82]
[0.42, 0.76, ..., 0.03, 0.12]

...
[0.11, 0.35, ..., 0.01, 0.99]

Embeddings
[0.14, 0.74, ..., 0.23, 0.11]
[0.34, 0.63, ..., 0.66, 0.22]

[0.76, 0.53, ..., 0.02, 0.90]

Train Graph
Convolutional

Neural Network
(GCN) 

Manifold
Learning

Re-Ranking 

ID101       ID555        ID400

......
Classes

Dataset 

... 

Deep Feature
Extractor Compute Ranked Lists

through BallTree

Ranked Lists 

... ...

Ranked Lists 

... 

1 2

34

5

fgcn

fm

frfe

fg

Figure 9.1 – Workflow of our proposed Manifold-GCN framework for image classification. The
steps of the approach are numbered.

9.1.1 Similarity Measurement and Ranking Model

In the proposed approach, the similarity information is encoded on ranking
structures. Let us consider a ranking task in which, given a query image, an ordered
list of images from the collection is returned according to the similarity to the query.
Formally, given a query image oq, a ranked list τq=(o1, o2, . . . , oL) in response to the query,
where L denotes the length of the list. The ranked list τq can be defined as a permutation
of a set CL which contains the L most similar images to image oq in the collection C. The
permutation τq is a bijection from the set CL onto the set [L] = {1, 2, . . . , L}. The τq(oi)
notation denotes the position (or rank) of image oi in the ranked list τq.

The ranked list τq can be computed based on the comparison between image
representations. Let δ: Rd × Rd → R+ be a distance function that computes the distance
between two images according to their corresponding feature vectors. The Euclidean
distance is often used as the distance function. Formally, the distance between two images
oi, oj is defined by δ(xi, xj).

For a given query, a ranked list can be obtained by sorting images in increasing
order of the distance. In terms of ranking positions, we can say that if image oi is ranked
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before image oj in the ranked list of image oq, that is, τq(oi) < τq(oj), then δ(xq,xi) ≤
δ(xq,xj). Taking every image in the collection as a query image oq, a set of ranked lists T
= {τ1, τ2, . . . , τn} can be obtained. In this way, the set T can be obtained from the feature
matrix X and the ranking task defined by a function fr, such that T = fr(X). Tree-based
indexing structures [234] and hashing approaches [99] can be exploited in order to provide
efficient implementations for the function fr. In this work, we consider BallTree [234, 239]
structures.

9.1.2 Unsupervised Manifold Learning

How to accurately define distance or similarity among data elements is a challenging
and fundamental step in many machine learning tasks. The most common approach is given
by pairwise comparisons based on Euclidean-like distance functions. However, pairwise
analyses ignore contextual information and complex similarity arrangements encoded in
the structural information of the dataset manifold. Aiming at addressing such drawbacks,
many contextual similarity approaches take into account the structure of datasets in order
to compute more global and effective similarity measures.

Manifold Learning is a wide term that has many different definitions in the
literature. In general, manifold Learning approaches aim to capture and exploit the
intrinsic manifold structure to compute a more effective distance/similarity measure [133].
Recently, unsupervised manifold learning approaches based on ranking information have
achieved relevant advances in contextual similarity measurement [251, 252, 253].

In fact, the set of ranked lists T encodes rich similarity information about the
image collection. The main objective of rank-based manifold learning methods is to exploit
such information to capture the structure of the dataset manifold. Therefore, this step
consists of the use of unsupervised manifold learning methods for processing the original
ranked lists, providing more effective ranking results which are subsequently modeled as
graphs to be submitted to a GCN model.

Formally, the manifold learning methods can be defined as a function fm that
receives a set of ranked lists T as input and returns a set of ranked lists Tm as output,
which is expected to be more effective than the original:

Tm = fm(T ). (9.1)

Once defined under a common formulation, three different manifold learning
algorithms were considered to instantiate the proposed approach (described in
Section 9.1.6).
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9.1.3 Graph Building

The improved set of ranked lists computed by the manifold learning methods is used
to build a graph. The motivation is based on the conjecture that more effective similarity
information can be extracted and encoded in the graph by exploiting the processed ranked
lists. Let G = (V,X, E) be the graph defined in Section 2.5.2. We propose to compute the
edge set E as a function of the set of ranked lists Tm, such that E = fg(Tm).

This work considers two distinct approaches to define the function fg. The similarity
information encoded in the ranked lists is modeled through different neighborhood set
formulations. Both approaches are discussed in the following.

• Traditional kNN Graph: The kNN graph is based on the natural neighborhood set.
Given an element oq, the natural neighborhood set N (oq, k) contains the k most similar
elements to oq, which can be formally defined as:

N (oq, k) = {X ⊆ C, |X | = k ∧ ∀oi ∈ X , oj ∈ C − X : τq(oi) < τq(oj)}. (9.2)

Therefore, the edge set E of the kNN graph can be defined as:

E = {(oq, oj) | oj ∈ N (oq, k)} . (9.3)

In other words, each element has an edge to the k most similar elements.

• Reciprocal kNN Graph: the reciprocal kNN graph is based on the reciprocal
neighborhood set [267], which requires a stronger bidirectional similarity relationship.
Different from the natural neighborhood set, which is not symmetrical, the reciprocal
neighborhood set is symmetrically defined as:

Nr(oq, k) = {obji|obji ∈ N (oq, k) ∧ oq ∈ N (oi, k)} . (9.4)

The edge set E for the reciprocal kNN set can be defined as:

E = {(oq, oj) | oj ∈ Nr(oq, k)} . (9.5)

Thus, we can interpret that there are edges between the elements oq and oj if they are
reciprocal neighbors in the top-k positions of their ranked lists.

For both kNN and reciprocal kNN approaches, the edge set E can be represented
by a non-negative adjacency matrix A = [aij] ∈ Rn×n, which can be defined as:

aij =

1, (oi, oj) ∈ E

0, otherwise.
(9.6)

The adjacency matrix A is used as input by GCN models, as discussed in the next section.
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9.1.4 Graph Convolutional Networks

Graph Convolutional Networks (GCN), originally introduced in [146], aim at
learning novel and more effective representations (embeddings) for each graph node. It
is done by iteratively aggregating the embeddings of its neighbors, encoding the graph
structure directly in a neural network model. The original model proposed in [146] is a
two-layer GCN model that uses the graph represented by the adjacency matrix A for
semi-supervised node classification.

The network model can be depicted as a function both on the feature data X and
on the adjacency matrix A, as:

Z = fgcn(X,A), (9.7)

where Z denotes an embedding matrix, such that Z = [z1, z2, . . . , zn]T ∈ Rn×c and zi is a
c-dimensional embedded representation learned for the node vi; where n is the dataset
size and c corresponds to the number of classes.

The degree matrices are computed as a pre-processing step, defined as Â =
D̃−1/2ÃD̃−1/2, where Ã = A + I and D̃ is the degree matrix of Ã. Then, the function
fgcn(·) which represents the two-layer GCN model assumes the form:

Z = f(X,A) = softmax(Â ReLU(ÂXW(0))W(1)). (9.8)

The matrix W(0) ∈ Rd×H defines the neural network weights for an input-to-hidden
layer with H feature maps, while W(1) ∈ RH×c is a hidden-to-output matrix. Both matrices
W(0) and W(1) are trained using gradient descent, considering the cross-entropy error over
all labeled nodes. vl ∈ VL.

The activation function is applied row-wise and is defined as softmax(zi) =
exp(zi)∑
i

exp(zi)
, where zi is the position i of embedding zi.

The softmax yields the probability distribution over the c class labels for each
row, i.e., the probability values sum up to 1 for each row. Given an image oi, the learned
embedded representation zi is then used for classification tasks by applying an argmax
over the output of the softmax.

9.1.5 GCN Models

The original GCN [146] model and more 4 variants [147, 363, 30] are used in the
proposed Manifold-GCN approach. The GCN models employed are:
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• Graph Convolution Network (GCN) [146]: The first GCN proposed, introducing
the idea of convolutions applied to graph domains, often known as GCN-Net or
simply GCN.

• Simple Graph Convolution (SGC) [363]: A simplification of the conventional
GCN models which removes the non-linearities and collapses weight matrix between
consecutive layers.

• Graph Attention Networks (GAT) [344]: Employs auto-attention layers with
the idea of solving the main shortcomings of the previous GCN models. The layers
are stacked in a way that it is possible to specify different weights for nodes of the
same neighborhood without requiring costly operations.

• Approximate Personalized Propagation of Neural Predictions
(APPNP) [147]: A model that combines a GCN with the PageRank algorithm,
deriving a propagation strategy based on a modified PageRank approach.

• Auto-Regressive Moving Average (ARMA) Filter Convolutions [30]: A
GCN variant that defines convolutional layers based on filters of Auto-Regressive
Moving Average type.

9.1.6 Manifold Learning Methods

Manifold learning can be broadly understood as the process of non-linear
dimensionality reduction by performing distance learning for a set of features. In fact, images
are commonly represented as points in a high-dimensional feature space. However, it has
been shown that data samples often live in a much lower dimensional intrinsic space [133].
Therefore, how to capture and exploit the intrinsic manifold structure to compute a more
effective distance/similarity measure becomes a key task in many areas [133]. In this work,
we consider recent unsupervised manifold learning methods to provide more effective
similarity measures using rank-based approaches. Three of them are considered:

• Log-based Hypergraph of Ranking References (LHRR) [251]: An algorithm
that models the input ranked lists as hypergraphs and exploits the relations between
the elements in the dataset.

• BFS-Tree of Ranking References (BFSTREE) [253]: It uses a breadth-first
tree structure that models the similarity information between the elements in the
ranked lists, which is employed with the objective of analyzing the implicit relations
between the elements of the dataset. The tree structure allows a representation of
the top-k elements such that the weights of the edges are computed based on the
correlations among the ranked lists.
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• The Rank-based Diffusion Process with Assured Convergence
(RDPAC) [252]: It performs a diffusion process to exploit the information
contained in the ranked lists. It also presents formal proof for the convergence of the
diffusion process. The asymptotic complexity of the algorithm is low, which allows
its use in many different scenarios with a great number of data elements.

9.2 Experimental Evaluation
This section discusses the experimental evaluation conducted to assess the

effectiveness of the proposed Manifold-GCN. Section 9.2.1 discusses the experimental
protocol. The semi-supervised image classification results are presented in Section 9.2.2.
Section 9.2.4 shows visualizations of feature space improvements, while Section 9.2.5 reports
a comparison with both traditional and recent state-of-the-art methods, Section 9.2.6
reports the run-time for each step of the proposed approach.

9.2.1 Experimental Protocol

The Manifold-GCN was evaluated for semi-supervised classification and retrieval.
Three public datasets were considered for classification (Flowers [229], Corel5k [194],
and CUB200 [346]) and three for retrieval in person re-identification (CUHK03 [176],
Market1501 [422], and DukeMTMC [428]). A diverse set of deep features was considered,
including CNNs and Vision Transformers. More details about the evaluation measures,
datasets, and descriptors can be found in Sections 4.1 and 4.2, respectively.

The proposed Manifold-GCN consists of two steps: manifold learning and
semi-supervised classification. For the manifold learning approach, all the data is used for
the distance learning process, which is completely unsupervised; no labels are used. In the
second step, the semi-supervised classification by the GCN, we perform cross-validation
that, in our case, consists of a 10-fold split where one fold is used for training and the rest
is used for testing. For each of the 10 executions (one for every fold being considered as
training), 90% is considered as testing data (unlabeled data). We highlight that, since we
are running 10 executions by changing the folds, every dataset element will be considered
as training or test at least once. Therefore, each reported value corresponds to the mean
of 50 executions (number of executions multiplied by the number of folds).

Regarding the training and test splits, the same protocol was applied to both our
approach and all baselines. Since the GCNs used by the Manifold-GCN are transductive
methods, both the training and testing data are considered during training. However, only
the training data is labeled. Model predictions are always made on the test set, which
is unlabeled. It is important to observe that only 10% of the data is used for training,
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which creates a challenging semi-supervised setting where the amount of labeled data is
significantly smaller than the unlabeled data.

For all the GCNs, the Adam optimizer with a learning rate of 10−5 was used, except
for Cub200, in which we used a learning rate of 10−4. Regarding the number of neurons,
we used 256. The only exceptions are GCN-SGC, which does not have this parameter;
and GCN-GAT which has a number of heads, which was set to 32. The training processes
consisted of 200 epochs, using input graphs with k = 40. In the same way, the manifold
learning methods also have a parameter k, which is different from the graph k. For the
method k, we also used k = 40.

9.2.2 Classification Results

The proposed approach was evaluated on a wide diversity of semi-supervised
classification scenarios, considering 3 distinct datasets (Flowers [229], Corel5k [194], and
CUB200 [346]). For each dataset, 4 to 5 deep learning features trained on a transfer
learning setting were used, considering both CNNs and Vision Transformers approaches.
For classification, 5 GCN models are evaluated considering both the traditional and
reciprocal kNN graphs. The impact of the re-ranking step is also assessed, evaluating the
classification results with and without this step, considering 3 distinct rank-based manifold
learning methods. In the semi-supervised scenario, the mean of 5 executions for 10 folds
was performed.

Tables 9.1, 9.2 and 9.3 present the results for the datasets Flowers, Corel5k, and
CUB200, respectively. The best result for each feature/GCN is highlighted in bold. The
gray highlight is used to indicate the best result for the corresponding GCN. The blue
color indicates the best result for the dataset (the best result in the whole table).

Some interesting observations can be made from the experimental results. In general,
it can be noticed that the reciprocal kNN graph outperforms the traditional kNN graph.
It can be observed that the use of manifold learning methods outperforms the scenarios
without its use. Moreover, the combination of reciprocal kNN graph and manifold learning
methods leads to the best results for all GCN models (gray highlight) and datasets (in
blue).

Among the features, VIT-B16 yielded the best results. Therefore, there is a
correlation that shows that the better the feature, the better the classification result. In
this case, the best feature is VIT-B16. For GCN models and manifold learning methods,
the diversity is higher, but GCN-SGC and RDPAC achieved the best results in most
of the scenarios. We also can highlight the remarkable gains obtained on all evaluated
datasets and features from the original (kNN without re-ranking) to the proposed approach
(reciprocal kNN with re-ranking). For CUB200, the most challenging dataset, the accuracy
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of GCN-APPNP was improved from 55.24% to 75.59%.

Our method was also evaluated considering the weighted F-Measure. Figure 9.2
reports the results for GCN-SGC on the traditional kNN graph (on the left) and the
Reciprocal kNN graph (on the right). For every graph, we see that using manifold learning
improves the results of the traditional GCN.

Table 9.1 – Impact of manifold learning approaches (LHRR, RDPAC, BFSTREE) and Reciprocal
Graph (Rec.) on the classification accuracy (%) of 5 different GCN models on Flowers
dataset. The best results for each feature and GCN model are highlighted in bold,
the best results for each GCN model are marked with a gray background, and the
best result for the entire dataset is highlighted in blue. In all the cases, the best
results used manifold learning and the Reciprocal Graph.

Classifier Specification Feature

GCN Graph Re-Rank CNN-ResNet CNN-DPNet CNN-SENet T2T-VIT24 VIT-B16
[110] [51] [117] [399] [77]

G
CN

-N
et

kNN — 79.08 ± 0.3039 76.94 ± 0.3688 72.72 ± 0.2052 69.75 ± 0.0827 92.72 ± 0.1324
kNN LHRR 84.37 ± 0.3239 80.76 ± 0.1372 73.89 ± 0.133 72.03 ± 0.1131 95.88 ± 0.0567
kNN RDPAC 83.91 ± 0.1279 81.24 ± 0.2597 74.76 ± 0.2245 74.60 ± 0.1353 96.86 ± 0.0702
kNN BFSTREE 83.12 ± 0.1784 81.39 ± 0.1222 74.83 ± 0.1284 72.49 ± 0.3283 96.33 ± 0.0695
Rec. — 83.89 ± 0.1973 81.19 ± 0.264 76.23 ± 0.1913 75.82 ± 0.2096 97.07 ± 0.0606
Rec. LHRR 84.67 ± 0.0988 80.64 ± 0.1749 73.97 ± 0.1383 72.40 ± 0.1927 95.39 ± 0.1583
Rec. RDPAC 84.20 ± 0.1975 82.27 ± 0.1659 76.61 ± 0.1968 75.87 ± 0.1877 97.16 ± 0.0168
Rec. BFSTREE 82.97 ± 0.1623 81.20 ± 0.1141 74.80 ± 0.2034 73.26 ± 0.1008 96.52 ± 0.0538

G
CN

-S
G

C

kNN — 79.64 ± 0.1023 77.09 ± 0.1139 73.00 ± 0.0941 70.05 ± 0.0802 92.84 ± 0.0655
kNN LHRR 84.41 ± 0.0835 80.36 ± 0.0661 74.04 ± 0.0599 72.11 ± 0.113 95.85 ± 0.0285
kNN RDPAC 84.19 ± 0.0659 81.12 ± 0.0645 75.06 ± 0.0627 75.18 ± 0.0743 96.95 ± 0.0133
kNN BFSTREE 83.33 ± 0.0533 81.54 ± 0.0410 75.08 ± 0.0565 72.86 ± 0.0879 96.42 ± 0.0396
Rec. — 83.99 ± 0.0478 81.32 ± 0.0314 76.16 ± 0.0415 75.69 ± 0.0828 96.93 ± 0.0464
Rec. LHRR 84.91 ± 0.0665 80.75 ± 0.0694 74.60 ± 0.0510 72.95 ± 0.0563 95.47 ± 0.0171
Rec. RDPAC 84.53 ± 0.0580 82.53 ± 0.1335 76.93 ± 0.0376 76.43 ± 0.0499 97.11 ± 0.0163
Rec. BFSTREE 83.43 ± 0.0200 81.58 ± 0.1169 75.03 ± 0.0313 73.58 ± 0.026 96.63 ± 0.0337

G
CN

-G
AT

kNN — 80.67 ± 0.2144 65.60 ± 0.9961 74.64 ± 0.3048 67.33 ± 0.9069 93.65 ± 0.228
kNN LHRR 84.52 ± 0.3202 76.15 ± 1.4547 75.48 ± 0.2365 73.37 ± 0.2824 95.33 ± 0.2522
kNN RDPAC 84.02 ± 0.1058 77.39 ± 1.2703 75.29 ± 0.3550 75.40 ± 0.4316 97.09 ± 0.0572
kNN BFSTREE 83.04 ± 0.1844 77.19 ± 1.833 75.82 ± 0.2086 73.26 ± 0.3184 96.41 ± 0.0465
Rec. — 83.67 ± 0.1965 77.42 ± 0.6762 76.74 ± 0.3398 74.82 ± 0.2978 96.99 ± 0.0558
Rec. LHRR 84.82 ± 0.2194 79.63 ± 0.6337 75.22 ± 0.2648 73.32 ± 0.3684 95.21 ± 0.2575
Rec. RDPAC 84.40 ± 0.1488 79.69 ± 1.0373 77.18 ± 0.2940 76.90 ± 0.3418 97.22 ± 0.0557
Rec. BFSTREE 82.79 ± 0.2926 78.74 ± 0.2682 75.94 ± 0.2681 73.85 ± 0.2632 96.55 ± 0.0881

G
CN

-A
PP

NP

kNN — 77.25 ± 0.1692 76.38 ± 0.238 71.0 ± 0.4051 69.45 ± 0.3072 90.24 ± 0.2128
kNN LHRR 84.58 ± 0.2621 82.53 ± 0.2443 76.83 ± 0.1622 74.32 ± 0.2989 96.05 ± 0.0421
kNN RDPAC 85.35 ± 0.2205 83.32 ± 0.1287 76.89 ± 0.3673 77.87 ± 0.0660 97.28 ± 0.0303
kNN BFSTREE 84.22 ± 0.1638 83.34 ± 0.0875 77.94 ± 0.3084 75.65 ± 0.2505 96.73 ± 0.0763
Rec. — 83.91 ± 0.1181 82.20 ± 0.2160 77.74 ± 0.1645 77.11 ± 0.1485 97.24 ± 0.0470
Rec. LHRR 85.88 ± 0.1896 82.55 ± 0.2138 76.60 ± 0.2479 75.40 ± 0.2458 95.68 ± 0.1083
Rec. RDPAC 85.41 ± 0.2304 83.99 ± 0.1276 78.82 ± 0.1466 78.01 ± 0.1307 97.43 ± 0.0699
Rec. BFSTREE 83.75 ± 0.2099 83.14 ± 0.1915 77.83 ± 0.1826 75.85 ± 0.2098 96.89 ± 0.0632

G
CN

-A
RM

A

kNN — 78.69 ± 0.2471 76.01 ± 0.295 73.18 ± 0.4015 70.47 ± 0.2548 91.27 ± 0.1731
kNN LHRR 84.64 ± 0.3211 81.90 ± 0.4272 76.09 ± 0.1451 74.26 ± 0.2543 95.66 ± 0.1726
kNN RDPAC 85.05 ± 0.1643 82.38 ± 0.3741 76.18 ± 0.3637 76.75 ± 0.2599 96.88 ± 0.0698
kNN BFSTREE 83.72 ± 0.0791 81.96 ± 0.3477 76.81 ± 0.1272 75.03 ± 0.1647 96.24 ± 0.0812
Rec. — 83.32 ± 0.3713 80.86 ± 0.1282 76.96 ± 0.3041 76.11 ± 0.3851 96.66 ± 0.1140
Rec. LHRR 85.36 ± 0.3818 82.17 ± 0.3283 75.92 ± 0.2516 74.64 ± 0.3728 95.13 ± 0.2118
Rec. RDPAC 84.97 ± 0.2524 83.14 ± 0.3078 77.89 ± 0.2358 77.81 ± 0.3271 97.02 ± 0.0944
Rec. BFSTREE 84.06 ± 0.2612 82.21 ± 0.1901 76.88 ± 0.1897 75.10 ± 0.3000 96.47 ± 0.1171
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Table 9.2 – Impact of manifold learning approaches (LHRR, RDPAC, BFSTREE) and Reciprocal
Graph (Rec.) on the classification accuracy (%) of 5 different GCN models on Corel5k
dataset. The best results for each feature and GCN model are highlighted in bold,
the best results for each GCN model are marked with a gray background, and the
best result for the entire dataset is highlighted in blue. In all the cases, the best
results used manifold learning.

Classifier Specification Feature

GCN Graph Re-Rank CNN-ResNet CNN-DPNet CNN-SENet T2T-VIT24 VIT-B16
[110] [51] [117] [399] [77]

G
CN

-N
et

kNN — 89.34 ± 0.0950 86.49 ± 0.0998 89.17 ± 0.0956 89.02 ± 0.1452 89.93 ± 0.2878
kNN LHRR 91.40 ± 0.0906 88.94 ± 0.1958 90.19 ± 0.1392 90.68 ± 0.0957 94.57 ± 0.121
kNN RDPAC 91.46 ± 0.1402 89.05 ± 0.1054 90.65 ± 0.0483 91.77 ± 0.1246 94.29 ± 0.139
kNN BFSTREE 92.03 ± 0.1165 89.28 ± 0.1858 91.19 ± 0.1102 91.78 ± 0.0432 94.30 ± 0.3362
Rec. — 91.68 ± 0.1064 89.62 ± 0.1114 91.81 ± 0.1159 92.19 ± 0.0908 93.42 ± 0.1987
Rec. LHRR 91.68 ± 0.0224 88.48 ± 0.1268 90.58 ± 0.0901 91.50 ± 0.0684 94.63 ± 0.139
Rec. RDPAC 92.00 ± 0.1434 89.55 ± 0.0944 90.93 ± 0.1654 91.96 ± 0.0705 94.76 ± 0.1577
Rec. BFSTREE 92.00 ± 0.0954 89.33 ± 0.1221 91.32 ± 0.0833 92.43 ± 0.0401 94.39 ± 0.2771

G
CN

-S
G

C

kNN — 89.62 ± 0.0321 86.78 ± 0.0256 89.81 ± 0.0426 88.95 ± 0.0482 93.36 ± 0.0401
kNN LHRR 91.19 ± 0.0262 88.74 ± 0.0242 89.90 ± 0.044 90.49 ± 0.0518 95.20 ± 0.0219
kNN RDPAC 91.47 ± 0.0216 88.95 ± 0.0632 90.70 ± 0.0403 91.77 ± 0.0521 94.76 ± 0.078
kNN BFSTREE 91.98 ± 0.0246 89.23 ± 0.0453 91.40 ± 0.0061 91.71 ± 0.0444 95.26 ± 0.0759
Rec. — 91.98 ± 0.0133 89.83 ± 0.0415 92.15 ± 0.0164 92.75 ± 0.0908 95.49 ± 0.0107
Rec. LHRR 91.73 ± 0.0508 88.70 ± 0.0669 90.73 ± 0.0235 91.68 ± 0.0305 95.57 ± 0.017
Rec. RDPAC 92.00 ± 0.0247 89.84 ± 0.1057 90.85 ± 0.0396 92.31 ± 0.072 95.50 ± 0.020
Rec. BFSTREE 92.04 ± 0.009 89.49 ± 0.0627 91.30 ± 0.0257 92.54 ± 0.0591 95.30 ± 0.0479

G
CN

-G
AT

kNN — 90.48 ± 0.1727 83.28 ± 0.33 91.13 ± 0.1107 90.7 ± 0.1187 91.3 ± 0.1764
kNN LHRR 92.21 ± 0.1328 88.59 ± 0.4012 91.28 ± 0.2208 92.2 ± 0.0839 94.56 ± 0.1777
kNN RDPAC 91.86 ± 0.1403 89.78 ± 0.2723 91.41 ± 0.1429 92.82 ± 0.0956 94.46 ± 0.2555
kNN BFSTREE 92.42 ± 0.1008 89.61 ± 0.362 91.95 ± 0.1382 93.09 ± 0.1337 94.58 ± 0.2226
Rec. — 92.02 ± 0.0917 89.0 ± 0.2638 92.23 ± 0.0844 92.81 ± 0.113 93.64 ± 0.2373
Rec. LHRR 92.19 ± 0.1057 89.17 ± 0.2074 91.18 ± 0.1451 92.41 ± 0.1456 94.55 ± 0.1918
Rec. RDPAC 92.22 ± 0.0858 90.48 ± 0.1718 91.48 ± 0.1021 93.02 ± 0.1334 94.89 ± 0.1492
Rec. BFSTREE 92.30 ± 0.1128 90.01 ± 0.2374 91.88 ± 0.1081 93.35 ± 0.1537 94.75 ± 0.1385

G
CN

-A
PP

NP

kNN — 89.72 ± 0.2031 87.68 ± 0.0785 89.92 ± 0.0992 89.86 ± 0.0731 86.89 ± 0.2487
kNN LHRR 92.6 ± 0.0625 90.81 ± 0.1043 91.49 ± 0.1307 91.83 ± 0.0952 94.53 ± 0.1144
kNN RDPAC 92.69 ± 0.1161 90.75 ± 0.179 91.81 ± 0.098 92.58 ± 0.0588 94.12 ± 0.2213
kNN BFSTREE 93.04 ± 0.0872 91.01 ± 0.1026 92.35 ± 0.0535 92.83 ± 0.031 94.37 ± 0.0855
Rec. — 92.69 ± 0.05 90.70 ± 0.1301 92.79 ± 0.0429 93.56 ± 0.0669 93.53 ± 0.1042
Rec. LHRR 92.88 ± 0.1058 89.99 ± 0.0869 91.78 ± 0.0694 92.63 ± 0.0817 94.95 ± 0.2116
Rec. RDPAC 92.82 ± 0.046 90.95 ± 0.1134 91.92 ± 0.0738 93.17 ± 0.0804 95.13 ± 0.1095
Rec. BFSTREE 93.08 ± 0.0727 90.78 ± 0.1317 92.39 ± 0.0269 93.70 ± 0.0653 94.72 ± 0.1564

G
CN

-A
RM

A

kNN — 88.58 ± 0.312 86.47 ± 0.0729 89.11 ± 0.1061 89.16 ± 0.0571 85.48 ± 0.3945
kNN LHRR 91.58 ± 0.1185 89.84 ± 0.1565 90.98 ± 0.1738 91.46 ± 0.0963 90.66 ± 0.5051
kNN RDPAC 91.72 ± 0.1775 90.09 ± 0.2858 91.08 ± 0.1226 92.28 ± 0.0545 92.62 ± 0.4067
kNN BFSTREE 92.23 ± 0.1447 90.31 ± 0.1195 91.7 ± 0.0869 92.24 ± 0.0682 92.28 ± 0.3061
Rec. — 91.14 ± 0.137 89.24 ± 0.2139 91.31 ± 0.1887 91.84 ± 0.0774 90.48 ± 0.1707
Rec. LHRR 91.77 ± 0.1541 89.24 ± 0.1428 91.07 ± 0.126 91.78 ± 0.1145 92.39 ± 0.2078
Rec. RDPAC 92.05 ± 0.1403 90.41 ± 0.1645 91.47 ± 0.1202 92.49 ± 0.2056 92.80 ± 0.1896
Rec. BFSTREE 92.27 ± 0.0377 90.14 ± 0.1897 91.71 ± 0.1753 92.90 ± 0.1446 92.74 ± 0.2083
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Table 9.3 – Impact of manifold learning approaches (LHRR, RDPAC, BFSTREE) and Reciprocal
Graph (Rec.) on the classification accuracy (%) of 5 different GCN models on
CUB200 dataset. The best results for each feature and GCN model are highlighted
in bold, the best results for each GCN model are marked with a gray background,
and the best result for the entire dataset is highlighted in blue. In all the cases, the
best results used manifold learning.

Classifier Specification Feature

GCN Graph Re-Rank CNN-ResNet CNN-SENet CNN-Xception VIT-B16
[110] [51] [52] [77]

G
CN

-N
et

kNN — 40.76 ± 0.7467 35.8 ± 0.0634 46.66 ± 0.019 64.39 ± 0.4486
kNN LHRR 49.16 ± 0.3119 36.17 ± 0.1153 51.13 ± 0.0738 70.42 ± 0.671
kNN RDPAC 49.44 ± 0.1092 36.84 ± 0.0578 51.18 ± 0.0284 72.71 ± 0.1506
kNN BFSTREE 49.18 ± 0.1011 37.10 ± 0.0482 50.62 ± 0.0639 71.54 ± 0.1888
Rec. — 49.46 ± 0.3279 39.42 ± 0.113 50.76 ± 0.0713 68.85 ± 0.3055
Rec. LHRR 51.23 ± 0.0788 36.5 ± 0.0728 51.92 ± 0.0546 73.49 ± 0.1879
Rec. RDPAC 51.57 ± 0.0999 38.57 ± 0.0712 53.12 ± 0.0596 74.39 ± 0.3061
Rec. BFSTREE 50.80 ± 0.0291 37.8 ± 0.0538 51.82 ± 0.0658 73.58 ± 0.3939

G
CN

-S
G

C

kNN — 47.55 ± 0.0329 36.48 ± 0.0684 48.60 ± 0.0072 74.23 ± 0.0385
kNN LHRR 51.22 ± 0.0184 35.88 ± 0.0137 52.36 ± 0.0125 77.84 ± 0.0519
kNN RDPAC 51.88 ± 0.0315 37.75 ± 0.0148 52.98 ± 0.0103 78.16 ± 0.0453
kNN BFSTREE 51.66 ± 0.016 37.70 ± 0.01 52.21 ± 0.0095 77.31 ± 0.0563
Rec. — 53.71 ± 0.0362 40.31 ± 0.0255 54.0 ± 0.0054 78.03 ± 0.0428
Rec. LHRR 51.99 ± 0.0251 36.74 ± 0.0162 53.12 ± 0.0153 78.54 ± 0.0177
Rec. RDPAC 52.85 ± 0.0164 38.91 ± 0.0073 54.59 ± 0.0036 79.27 ± 0.0325
Rec. BFSTREE 52.68 ± 0.0308 38.65 ± 0.023 53.54 ± 0.0041 78.12 ± 0.0344

G
CN

-G
AT

kNN — 41.84 ± 0.2901 32.5 ± 0.205 42.45 ± 0.1848 59.53 ± 0.5668
kNN LHRR 48.86 ± 0.1593 34.78 ± 0.1155 48.8 ± 0.246 64.02 ± 0.4082
kNN RDPAC 49.05 ± 0.1145 35.9 ± 0.1158 49.03 ± 0.1037 68.78 ± 0.2495
kNN BFSTREE 48.77 ± 0.1427 35.98 ± 0.1457 48.3 ± 0.1084 68.1 ± 0.2488
Rec. — 45.46 ± 0.1879 33.02 ± 0.1206 45.88 ± 0.16 64.82 ± 0.2582
Rec. LHRR 50.19 ± 0.0904 35.28 ± 0.1364 50.17 ± 0.1073 70.31 ± 0.0762
Rec. RDPAC 50.95 ± 0.0632 37.55 ± 0.1087 51.29 ± 0.1577 72.94 ± 0.1716
Rec. BFSTREE 49.89 ± 0.1871 36.67 ± 0.129 49.87 ± 0.1245 71.73 ± 0.1775

G
CN

-A
PP

NP

kNN — 29.16 ± 0.6867 30.27 ± 0.3694 42.68 ± 0.0826 55.24 ± 0.5689
kNN LHRR 47.0 ± 0.1836 34.91 ± 0.1598 48.77 ± 0.0979 66.57 ± 0.572
kNN RDPAC 47.19 ± 0.0701 35.29 ± 0.1195 47.72 ± 0.094 69.92 ± 0.2262
kNN BFSTREE 46.59 ± 0.2154 35.28 ± 0.0718 47.14 ± 0.0895 70.86 ± 0.2702
Rec. — 48.51 ± 0.1192 38.02 ± 0.0461 47.51 ± 0.0452 68.29 ± 0.0935
Rec. LHRR 51.99 ± 0.0800 37.45 ± 0.0768 51.43 ± 0.084 74.61 ± 0.0991
Rec. RDPAC 51.82 ± 0.1028 39.15 ± 0.1601 52.17 ± 0.0865 75.59 ± 0.2139
Rec. BFSTREE 50.6 ± 0.0848 38.21 ± 0.0358 50.26 ± 0.1301 74.15 ± 0.1837

G
CN

-A
RM

A

kNN — 38.74 ± 0.4527 32.96 ± 0.1626 42.91 ± 0.1465 60.26 ± 0.4398
kNN LHRR 47.58 ± 0.2387 34.56 ± 0.0799 49.26 ± 0.2191 67.21 ± 0.2825
kNN RDPAC 47.77 ± 0.2075 35.4 ± 0.1474 49.88 ± 0.1479 71.16 ± 0.2337
kNN BFSTREE 47.12 ± 0.3126 35.6 ± 0.1385 48.78 ± 0.0991 70.13 ± 0.4433
Rec. — 44.37 ± 0.1739 34.25 ± 0.1559 46.95 ± 0.3062 64.55 ± 0.3184
Rec. LHRR 49.29 ± 0.0987 35.22 ± 0.0891 50.38 ± 0.1318 70.05 ± 0.653
Rec. RDPAC 49.81 ± 0.2090 37.12 ± 0.1276 51.63 ± 0.1155 73.29 ± 0.34
Rec. BFSTREE 48.92 ± 0.2721 36.38 ± 0.1331 50.41 ± 0.0777 72.17 ± 0.3336



Chapter 9. Contextual Manifold Learning on Graph Convolutional Networks (Manifold-GCN) 183

CNN-ResNet CNN-DPNet VIT-B16
GCN-SGC Network

75.0

77.5

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

F-
M

ea
su

re

Impact of Manifold Learning on Flowers dataset 
 with GCN-SGC and Traditional kNN Graph

kNN (without manifold learning)
kNN + LHRR
kNN + RDPAC
kNN + BFSTREE

CNN-ResNet CNN-DPNet VIT-B16
GCN-SGC Network

75.0

77.5

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

F-
M

ea
su

re

Impact of Manifold Learning on Flowers dataset 
 with GCN-SGC and Reciprocal kNN Graph

Rec. kNN (without manifold learning)
Rec. kNN + LHRR
Rec. kNN + RDPAC
Rec. kNN + BFSTREE

(a) Flowers - Traditional kNN (b) Flowers - Reciprocal kNN

CNN-ResNet CNN-DPNet VIT-B16
GCN-SGC Network

86

88

90

92

94

96

F-
M

ea
su

re

Impact of Manifold Learning on Corel5k dataset 
 with GCN-SGC and Traditional kNN Graph

kNN (without manifold learning)
kNN + LHRR
kNN + RDPAC
kNN + BFSTREE

CNN-ResNet CNN-DPNet VIT-B16
GCN-SGC Network

86

88

90

92

94

96

F-
M

ea
su

re
Impact of Manifold Learning on Corel5k dataset 

 with GCN-SGC and Reciprocal kNN Graph
Rec. kNN (without manifold learning)
Rec. kNN + LHRR
Rec. kNN + RDPAC
Rec. kNN + BFSTREE

(c) Corel5k - Traditional kNN (d) Corel5k - Reciprocal kNN

CNN-ResNet CNN-Xception VIT-B16
GCN-SGC Network

40

45

50

55

60

65

70

75

80

F-
M

ea
su

re

Impact of Manifold Learning on CUB200 dataset 
 with GCN-SGC and Traditional kNN Graph

kNN (without manifold learning)
kNN + LHRR
kNN + RDPAC
kNN + BFSTREE

CNN-ResNet CNN-Xception VIT-B16
GCN-SGC Network

40

45

50

55

60

65

70

75

80

F-
M

ea
su

re

Impact of Manifold Learning on CUB200 dataset 
 with GCN-SGC and Reciprocal kNN Graph

Rec. kNN (without manifold learning)
Rec. kNN + LHRR
Rec. kNN + RDPAC
Rec. kNN + BFSTREE

(e) Cub200 - Traditional kNN (f) Cub200 - Reciprocal kNN

Figure 9.2 – Impact of manifold learning approaches on F-measure results considering GCN-SGC
on different datasets and features.
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9.2.3 Person Re-ID Results

In view of the promising results obtained, the method was also evaluated for person
re-identification. The Re-ID results consider only the GCN-SGC, once this GCN is the
one that presented the best results in the majority of the experiments of the general
purpose datasets (Flowers, Corel5k, and CUB200). For training, 200 epochs were used
and a learning rate of 10−5. The features were pre-processed with PCA to obtain feature
vectors with 10 positions that are provided as input for the GCN network. The ranked
lists were obtained from the BallTree method with Euclidean distance for the embeddings
obtained as the output of the GCN-SGC. All the ranked lists have the same size (3000
positions).

Tables 9.4, 9.5, and 9.6 present the results for the datasets CUHK03 [176],
Market1501 [422] and DukeMTMC [428], respectively. The measures MAP and R1 were
used, once they are commonly used in Re-ID literature. The default dataset protocol was
used in all the cases. The reported results represent the mean and standard deviation of 5
executions considering the training set (train), test (gallery), and query (probe) proposed
by the authors of the datasets. Once again, it is noticeable that the reciprocal kNN graph
in combination with re-ranking methods produced the best results, which evince the
effectiveness of our proposed approach.

Table 9.4 – Results (%) for GCN-SGC on CUHK03 dataset.

Classifier Specification CNN-ResNet [110] OSNET-AIN [436]
Graph Re-Rank MAP R1 MAP R1
kNN — 12.08 ± 0.0390 12.60 ± 0.2819 23.18 ± 0.0544 24.07 ± 0.3397
kNN LHRR 18.59 ± 0.0364 18.46 ± 0.1093 34.25 ± 0.0527 33.58 ± 0.0962
kNN BFSTREE 18.54 ± 0.0907 18.40 ± 0.1994 34.83 ± 0.0662 34.03 ± 0.2731
kNN RDPAC 18.05 ± 0.0861 17.63 ± 0.1418 33.62 ± 0.0799 32.87 ± 0.0793
Rec. — 14.67 ± 0.0573 14.71 ± 0.1664 26.77 ± 0.1767 27.22 ± 0.0953
Rec. LHRR 19.02 ± 0.0376 18.68 ± 0.1328 35.95 ± 0.0519 35.19 ± 0.1743
Rec. BFSTREE 18.97 ± 0.0814 18.89 ± 0.1552 35.58 ± 0.1056 34.81 ± 0.1622
Rec. RDPAC 19.58 ± 0.0781 19.13 ± 0.1600 35.99 ± 0.0703 35.00 ± 0.1744

Table 9.5 – Results (%) on Market1501 dataset.

Classifier Specification CNN-ResNet [110] OSNET-AIN [436]
Graph Re-Rank MAP R1 MAP R1
kNN — 19.78 ± 0.0724 37.4 ± 0.2341 40.8 ± 0.1112 57.43 ± 0.0893
kNN LHRR 33.26 ± 0.0433 48.05 ± 0.1069 56.56 ± 0.0786 69.28 ± 0.0356
kNN BFSTREE 33.21 ± 0.0741 50.02 ± 0.1293 56.02 ± 0.0595 69.82 ± 0.0482
kNN RDPAC 32.10 ± 0.0671 47.99 ± 0.0869 54.83 ± 0.055 67.95 ± 0.0742
Rec. — 27.03 ± 0.0813 44.43 ± 0.1611 47.54 ± 0.0994 63.43 ± 0.1197
Rec. LHRR 34.16 ± 0.0737 49.31 ± 0.1197 57.37 ± 0.0836 69.41 ± 0.1105
Rec. BFSTREE 34.05 ± 0.0651 50.5 ± 0.0983 57.48 ± 0.0869 70.30 ± 0.0827
Rec. RDPAC 33.6 ± 0.0317 49.07 ± 0.0403 56.83 ± 0.054 69.39 ± 0.0774
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Table 9.6 – Results (%) for GCN-SGC on DukeMTMC dataset.

Classifier Specification CNN-ResNet [110] OSNET-AIN [436]
Graph Re-Rank MAP R1 MAP R1
kNN — 30.66 ± 0.0698 49.41 ± 0.0523 52.68 ± 0.0909 67.72 ± 0.2399
kNN LHRR 47.81 ± 0.0565 58.29 ± 0.1408 64.09 ± 0.0482 72.89 ± 0.1502
kNN BFSTREE 46.06 ± 0.0386 57.09 ± 0.158 62.21 ± 0.0409 72.13 ± 0.1502
kNN RDPAC 45.41 ± 0.0918 56.84 ± 0.0832 61.54 ± 0.0369 71.01 ± 0.1218
Rec. — 38.89 ± 0.0806 52.85 ± 0.2548 57.67 ± 0.0435 69.98 ± 0.066
Rec. LHRR 48.69 ± 0.0539 59.37 ± 0.1402 65.61 ± 0.0536 74.22 ± 0.1085
Rec. BFSTREE 48.15 ± 0.0804 58.7 ± 0.1459 65.66 ± 0.0514 73.82 ± 0.2246
Rec. RDPAC 48.54 ± 0.0409 58.84 ± 0.1170 65.83 ± 0.0372 73.67 ± 0.1121

9.2.4 Visualization Results

In order to visualize the effectiveness of our approach, an experiment was conducted
showing the distribution of features in a 2D space, after being processed by t-Distributed
Stochastic Neighbor Embedding (t-SNE) [214]. Figure 9.3 shows the results for (a) the
original CNN-ResNet features; (b) the GCN output with kNN graph; (c) the GCN output
with kNN graph and manifold learning; (d) the GCN output with Reciprocal graph and
manifold learning. The Flowers dataset was chosen for this visualization due to the small
number of classes, which makes it easier to visualize the improvements. Each class is
represented by a different combination of shape and color. Notice that the distribution
of classes is further improved when the Manifold-GCN is applied (c and d), which is
consistent with our main hypothesis.

9.2.5 Comparison with Other Approaches

For comparison purposes, a wide variety of supervised and semi-supervised
classification approaches were considered, both traditional and more recent ones. A brief
description of the employed baselines, the implementations, and the parameters used are
presented in the following:

• k Nearest Neighbor (kNN): A traditional approach that computes the distance
to the other elements in the dataset and selects the k closest ones. The sklearn
implementation was used, with k = 20.

• Support Vector Machine (SVM) [54]: It is a traditional method that consists
of finding the hyperplane that best separates the data into the correct classes
in a high-dimensional space. The sklearn implementation was used, with default
parameters and a Radial Basis Function (RBF) kernel.

• Single-Layer and Multi-Layer Perceptron: The sklearn implementation was
used for both, with the Stochastic Gradient Descent (SGD) optimizer.
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Figure 9.3 – t-SNE visualizations that show the feature space improvement when manifold
learning and reciprocal graph were applied. Experiments were conducted on the
Flowers dataset and CNN-ResNet features. Each class is represented by a different
shape and color.

• Optimum-Path Forest (OPF) [236, 8]: It builds a graph where each node is
an element of the dataset and the edges are weighted by their Euclidean distance.
The algorithm computes the optimum path between the nodes in order to classify
them into a given class. The pyOPF 10 implementation was used, with the default
parameters.

• Pseudo-label [162]: The method is semi-supervised and is used to assign labels to
unlabeled data. In this work, a public implementation 11 was used along with the
Logistic Regression classifier that employed the Stochastic Gradient Descent (SGD)
optimizer and Squared Hinge loss with α = 10−5 for training.

10 https://github.com/marcoscleison/PyOPF
11 https://github.com/anirudhshenoy/pseudo_labeling_small_datasets

https://github.com/marcoscleison/PyOPF
https://github.com/anirudhshenoy/pseudo_labeling_small_datasets
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• Label Spreading (LS) [433]: A semi-supervised algorithm that attributes labels to
elements according to the labels of their neighbors, given a certain degree of similarity.
For this process, it uses an affinity matrix based on a normalized graph Laplacian.
The sklearn implementation was used, considering a Radial Basis Function (RBF)
kernel with α = 0.4125, γ = 0.1, and a maximum of 100 iterations. This method is
used to expand the training set and is used along with the other classifiers.

• Learning Discrete Structures for Graph Neural Networks (GNN-LDS and
GNN-KNN-LDS) [90]: This Graph Neural Network (GNN) learns both a graph
and embeddings from the input features. It approximately solves a bilevel program
that learns a discrete probability distribution on the edges of the graph. The authors
claim that this is the first method that simultaneously learns the graph and the
parameters of a GNN for semi-supervised classification. The approach presents two
variants: (i) GNN-LDS; and (ii) GNN-KNN-LDS which initializes by computing a
kNN graph. Both were used as baselines with their default parameters proposed in
the implementation 12 provided by the original authors. For the kNN graph, k = 20
was used.

• Weakly Supervised Framework Experiments Framework (WSEF) [264]:
The method generates pseudo-labels by applying different rank correlation measures
(e.g., Jaccard, Spearman). The approach is mainly based on the idea that elements
that have ranked lists with a high intersection with others probably belong to the
same class. The implementation 13 provided by the authors was used considering
Rank Biased Overlap (RBO) [358] correlation measure, k = 40 in combination with
SVM.

• CoMatch [169]: The method is based on concepts of graph-based self-supervised
learning. The approach is trained to produce similar embeddings for the same image
with different augmentations. CoMatch jointly optimizes three losses: (i) a supervised
classification loss on labeled data, (ii) an unsupervised classification loss on unlabeled
data, and (iii) a graph-based contrastive loss on unlabeled data. It takes images as
input instead of features. This version employs ResNet [110] as the backbone. We
considered the implementation provided by the authors 14, with default parameters
(the ones used for ImageNet [70] in their code). We trained with a batch size of 25
and 400 epochs for all datasets. Except for the CUB200 dataset, which is larger, we
used a batch size of 50 and 300 epochs.

We also compared our results with three CNN-based classifiers, considering image
data as input. The images were provided with a size of 100x100 pixels in batches of
12 https://github.com/lucfra/LDS-GNN
13 https://github.com/UDLF/WSEF
14 https://github.com/salesforce/CoMatch

https://github.com/lucfra/LDS-GNN
https://github.com/UDLF/WSEF
https://github.com/salesforce/CoMatch
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size 32. For the other methods, the input consists of feature vectors obtained from deep
features trained through transfer learning. Notice that the CNNs used as baselines require
more labeled data in comparison to other methods and were evaluated on a supervised
cross-validation scenario (9 folds for training, 1 fold for testing). Except for CNN classifiers,
all other methods were evaluated on semi-supervised scenarios (1 fold for training, 9 folds
for testing).

Table 9.7 presents the comparison with both traditional and recent state-of-the-art
baselines in relation to our approach on Flowers, Corel5k, and CUB200 datasets. Most
results are the mean of 5 executions of 10 folds, with some exceptions which are indicated
in italic text. Some methods require long running times on larger datasets (i.e., LDS
and CoMatch). For GNN-KNN-LDS, KNN-LDS, and CoMatch, the results on CUB200
correspond to 1 execution. For CoMatch, the mean of 3 executions is reported for the
Corel5k dataset. The best result for each feature is highlighted in bold and the best for
each dataset is highlighted in red. The gray rows indicate the results that correspond to
our method.

The proposed method revealed superior results compared to the baselines in most
of the cases. The only exception is Flowers with VIT-B16 features where WSEF shows the
best results (97.82% accuracy). However, our Manifold-GCN is very close with 97.43%
accuracy.

9.2.6 Efficiency Results

We conducted an experiment to measure the run-time (in seconds) for running each
of the manifold learning methods and GCN models. The experiments were executed on a
machine with an Intel(R) Core(TM) i7-10700F CPU @ 2.90GHz, 32 GB RAM, NVIDIA
GeForce RTX 3060 GPU with 12GB VRAM running Ubuntu 20.04 with Linux kernel
5.15.0-52-generic. Table 9.8 reports the average and standard deviation of 5 executions of
10 folds on each dataset and for the two types of graphs (kNN and Reciprocal kNN).

Manifold Learning (M.L.) performs the pre-processing of the GCN graph. Since
these methods are not currently parallelized, they run all on the CPU. Parallelization
of these approaches is out of the scope of this work, but rank-based methods can be
parallelized with data parallelism as shown in other papers [335, 332]. While the training
involves both the GCN initialization and the learning process, testing is responsible for
computing the classification of all the queries. Both training and testing are performed on
the GPU.

Notice that the execution times are very low, which indicates that the method is
fast even for the more robust GCNs. Also, most compared methods have a costly training
process. An example is CoMatch (2021) which requires huge training times: 40 minutes on
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Flowers; 88.4 minutes on Corel5k; 260 minutes on CUB200. These times are the average
of executions for 100 epochs. However, CoMatch is generally recommended to be trained
for 400 epochs. These values are much higher than our proposed approach.

Table 9.7 – Accuracy comparison (%) for baselines on Flowers, Corel5k, and CUB200 datasets. For
every dataset, we compared our approach with both supervised and semi-supervised
baselines. The methods are compared with different input features. The results of
our method are highlighted with a gray background; the best results for each pair of
features and dataset are marked in bold, and the best for each dataset are in red.

Method Year Input Training Split Flowers Corel5k CUB200
MobileNet 2017

Supervised
86.66 90.90 35.20

ResNet50 2015 Images 85.97 91.52 31.10
CNN-Xception 2016 90.24 93.32 44.25
CoMatch 2021 Images Semi-Supervised 82.55 85.70 38.29
kNN —

Semi-Supervised

63.67 76.80 36.67
SVM 1995 80.54 88.73 48.84
OPF 2009 71.77 83.56 38.59
SL-Perceptron — 75.44 83.56 39.91
ML-Perceptron — 78.88 87.10 32.24
PseudoLabel+SGD 2013 82.69 89.76 21.67
LS+kNN 2004 ResNet 73.49 83.98 36.99
LS+SVM 2004 Features 73.53 83.26 38.70
LS+OPF 2004 72.66 82.32 39.28
LS+SL-Perceptron 2004 72.34 82.38 39.21
LS+ML-Perceptron 2004 73.03 82.53 39.68
GNN-LDS 2019 54.98 62.69 —
GNN-KNN-LDS 2019 79.32 88.94 37.78
WSEF+SVM+RBO 2021 85.12 91.68 52.17
SGC+Rec.+RDPAC Ours 84.53 92.00 52.85
Manifold-GCN (best result) Ours 85.88 93.08 52.85

kNN —

Semi-Supervised

48.71 58.78 22.23
SVM 1995 73.30 85.89 35.32
OPF 2009 64.00 81.33 30.94
SL-Perceptron — 71.84 82.28 36.39
ML-Perceptron — 72.62 86.90 32.15
PseudoLabel+SGD 2013 76.87 89.85 20.96
LS+kNN 2004 SENet 58.05 72.16 20.00
LS+SVM 2004 Features 59.84 72.79 24.82
LS+OPF 2004 59.25 72.20 25.38
LS+SL-Perceptron 2004 59.27 72.19 25.41
LS+ML-Perceptron 2004 59.39 72.24 25.72
GNN-LDS 2019 52.24 65.80 —
GNN-KNN-LDS 2019 73.69 89.95 —
WSEF+SVM+RBO 2021 76.16 89.74 36.49
SGC+Rec.+RDPAC Ours 76.93 90.85 38.91
Manifold-GCN (best result) Ours 78.82 92.79 40.31

kNN —

Semi-Supervised

91.91 81.19 56.62
SVM 1995 96.75 91.92 75.61
OPF 2009 96.50 90.02 73.27
SL-Perceptron — 75.79 82.15 70.84
ML-Perceptron — 92.59 74.41 12.02
PseudoLabel+SGD 2013 96.84 89.07 30.19
LS+kNN 2004 VIT-B16 95.74 89.63 66.15
LS+SVM 2004 Features 94.49 87.59 66.81
LS+OPF 2004 94.22 86.14 66.68
LS+SL-Perceptron 2004 93.71 86.31 65.45
LS+ML-Perceptron 2004 95.13 87.68 62.81
GNN-LDS 2019 72.03 56.33 22.75
GNN-KNN-LDS 2019 96.66 88.56 52.42
WSEF+SVM+RBO 2021 97.82 94.00 78.64
SGC+Rec.+RDPAC Ours 97.11 95.50 79.27
Manifold-GCN (best result) Ours 97.43 95.57 79.27
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Table 9.8 – Execution time (in seconds) for manifold learning methods and GCN approaches for
both training and testing.

Flowers Corel5k CUB200

M
.L

. LHRR 1.10 ± 0.0012 6.21 ± 0.0017 20.16 ± 0.0108
RDPAC 4.66 ± 0.0195 41.74 ± 0.0158 104.18 ± 0.5091
BFSTREE 9.34 ± 0.0046 37.94 ± 0.1712 95.09 ± 0.0704

T
ra

in

GCN-Net (kNN) 0.76 ± 0.0187 2.23 ± 0.0178 6.95 ± 0.0141
GCN-Net (Rec.) 0.61 ± 0.0016 1.57 ± 0.0018 4.40 ± 0.0003
GCN-SGC (kNN) 0.15 ± 0.0005 0.20 ± 0.0011 0.54 ± 0.0006
GCN-SGC (Rec.) 0.14 ± 0.0003 0.19 ± 0.0022 0.51 ± 0.0002
GCN-GAT (kNN) 3.41 ± 0.0021 11.89 ± 0.0031 30.62 ± 0.0095
GCN-GAT (Rec.) 2.44 ± 0.0025 7.90 ± 0.0029 19.35 ± 0.0043
GCN-APPNP (kNN) 0.77 ± 0.0088 3.49 ± 0.0032 27.95 ± 0.0025
GCN-APPNP (Rec.) 0.75 ± 0.0002 2.44 ± 0.0032 17.11 ± 0.0032
GCN-ARMA (kNN) 3.84 ± 0.0064 14.45 ± 0.0215 47.8 ± 0.0146
GCN-ARMA (Rec.) 2.80 ± 0.0051 9.94 ± 0.0013 30.51 ± 0.0113

T
es

t

GCN-Net (kNN) 0.06 ± 0.0366 0.18 ± 0.0382 0.40 ± 0.0327
GCN-Net (Rec.) 0.05 ± 0.0013 0.18 ± 0.002 0.44 ± 0.0029
GCN-SGC (kNN) 0.04 ± 0.0015 0.16 ± 0.0011 0.38 ± 0.0051
GCN-SGC (Rec.) 0.05 ± 0.0015 0.18 ± 0.0018 0.44 ± 0.0005
GCN-GAT (kNN) 0.04 ± 0.001 0.15 ± 0.0009 0.38 ± 0.004
GCN-GAT (Rec.) 0.05 ± 0.0015 0.18 ± 0.002 0.44 ± 0.0032
GCN-APPNP (kNN) 0.05 ± 0.0015 0.15 ± 0.0008 0.38 ± 0.0045
GCN-APPNP (Rec.) 0.05 ± 0.0015 0.18 ± 0.0021 0.44 ± 0.0026
GCN-ARMA (kNN) 0.04 ± 0.0015 0.15 ± 0.0008 0.39 ± 0.0036
GCN-ARMA (Rec.) 0.04 ± 0.0018 0.18 ± 0.0023 0.44 ± 0.0004
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10 Contextual Contrastive Loss (CCL)

Machine learning models heavily rely on loss functions, which assume a fundamental
role in optimization steps by defining a quantitative measure for prediction errors and
guiding the learning process. For classification, the cross-entropy loss is the most commonly
used metric for training in supervised learning scenarios [143]. The idea behind cross-entropy
loss is to quantify the difference between probability distributions. Despite its widespread
use, it exhibits limitations, particularly in its ability to generalize effectively to new, unseen
data. It also struggles with issues like class imbalance, noisy labels [418, 296], and the
potential for poor margins [84, 199].

Metric learning and contrastive learning were proposed as solutions to the
limitations of cross-entropy loss by focusing on learning effective feature representations
that emphasize the relationships and distances between data points, rather than merely
categorizing individual examples [143, 47]. Metric learning focuses on learning a distance
function over pairs of objects. This distance function aims to quantify how similar or
dissimilar these objects are to each other. The primary goal is to ensure that similar
objects are closer together while dissimilar objects are farther apart in the learned metric
space [143, 47].

One of the most well-known methods for self-supervised contrastive learning is the
Simultaneous Contrastive Learning of Representations [47] (SimCLR), which is a pioneer
in the field. However, since it does not consider labeled data, the Supervised Contrastive
Learning [143] (SupCon) was proposed, which can be seen as a supervised version of
SimCLR. Although significant progress has been made with contrastive losses, these
methods rely solely on comparing the similarity between pairs of embeddings, ignoring
contextual information.

In this research, the concept of contextual information refers to the process of
exploiting the neighboring elements of a data sample to compute more semantically
meaningful similarity measures. Some works exploit neighborhood analysis for different
purposes, showing the relevance of this information in the context of learning. The Simple
Siamese (SimSiam) [49] is compared to SimCLR by employing a kNN classifier on their
latent features. The Adaptive Neighborhood Metric Learning (ANML) [292] identifies and
removes inseparable similar and dissimilar samples in the training procedure. There is also
an example of application [311] that integrates nearest-neighbor hyperparameters with
triplet learning to enhance classification performance through a local-margin triplet loss
and local mining strategy. Another approach employs neighborhood information in graphs
to regularize learning [136], but without using a contrastive loss. However, few methods
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directly integrate contextual similarity information into the contrastive loss [441, 82, 183].

In this chapter, a novel loss function is proposed, the Contextual Contrastive Loss
(CCL), based on the supervised contrastive loss [143, 47] and contextual information,
successfully exploited for image retrieval [250, 245]. The proposed CCL improves the learned
similarity by taking advantage of contextual neighborhood information for comparing
elements during the training process. Among the main contributions, we can mention: (i) A
novel loss is proposed, named Contextual Contrastive Loss (CCL), based on the supervised
contrastive loss [143, 47] and contextual information [250, 245]; (ii) Different from other
methods that demand constant feature updates, ours only requires updates once per epoch,
utilizing those created during each iteration, causing no significant overhead during training;
(iii) The neighborhood sets are computed once and do not need to be recomputed during
the training process; (iv) A dynamic neighborhood size is proposed to initially enforce
the regrouping of larger regions in space, and then progressively focuses on fine-grained
regions as the training progresses, which smooths convergence; (v) Results reveal superior
results compared to the original contrastive loss [143, 47] on image classification datasets,
especially in cases where there are few labeled data and a smaller number of epochs, which
shows the potential of our approach in resource-constrained scenarios.

Despite sharing some similarities with the proposed CCL, the kNN Contrastive
Loss [441] is distinctly different: (i): It is designed for classification in dialogue systems,
specifically considering out-of-domain (OOD) samples, as opposed to image classification;
(ii): The kNN Contrastive Loss computes the average contrastive loss for an element and its
k neighbors. It iterates for the k neighbors before the contrastive loss logarithmic function.
In contrast, our loss formulation is notably different, replacing the similarity function with
the square of three components and featuring symmetry; (iii): The methodologies diverge
in managing neighborhood lists and features. Our method requires only occasional updates
of certain features once per epoch and does not necessitate updating the neighborhood set
throughout the training process.

The remaining of this chapter is organized as follows: Section 10.1 discusses the
Supervised Contrastive loss (SupCon) [143] and its main formulations, which the CCL is
based on. Section 10.2 describes the CCL approach and its steps. Section 10.3 presents
the experimental evaluation and results.

10.1 Supervised Contrastive Loss
In this section, we describe the supervised contrastive loss proposed by [143], which is

used as the inspiration for our approach. This loss is an extension of the self-supervised [47]
batch contrastive approaches to a fully supervised setting. This extension allows the model
to use label information more effectively. The general idea involves grouping data samples
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that belong to the same class closer together in the embedding space while pushing apart
groups of samples from different classes. The objective is to enhance the model’s ability to
distinguish between different classes based on the learned representations (features).

The learning process consists of the use of batches, which contain pairs of images.
For each image, two augmentations (i.e., views) are generated. Given a set of Nb randomly
sampled sample/label pairs, {xk,yk}k=1...Nb

, the corresponding batch used for training
consists of 2Nb pairs, {x̃ℓ, ỹℓ}ℓ=1...2Nb

, where x̃2k and x̃2k−1 are two random augmentations
of xk (k = 1 . . . Nb) and ỹ2k−1 = ỹ2k = yk. In this work, we consider only multiviewed
batches (size 2Nb), which present two augmentations for each image.

For a multiviewed batch, let i ∈ I ≡ {1 . . . 2Nb} be the index of an arbitrary
augmented sample, and let j(i) be the index of the other augmented sample originating
from the same source sample. The set of indices of all positives in a multiviewed batch
distinct from i is defined by Equation 10.1 and |P (i)| is its cardinality.

P (i) ≡ p ∈ A(i) : ỹp = ỹi, (10.1)

A(i) refers to the set of all elements in the batch except the image i called the anchor.

Based on these definitions, the work of [143] presents two different supervised
contrastive losses, presented by Equations 10.2 and 10.3, respectively.

Lsup
out =

∑
i∈I

Lsup
out ,i =

∑
i∈I

−1
|P (i)|

∑
p∈P (i)

log exp (zi · zp/ψ)∑
a∈A(i) exp (zi · za/ψ) (10.2)

Lsup
in =

∑
i∈I

Lsup
in ,i =

∑
i∈I

− log

 1
|P (i)|

∑
p∈P (i)

exp (zi · zp/ψ)∑
a∈A(i) exp (zi · za/ψ)

 (10.3)

Here, zi is the embedding generated by the model during the learning process
for the data sample i. The index i is called the anchor. The similarity of embeddings
is computed using the dot product operation. The scalar parameter ψ ∈ R+, known as
temperature, controls how tightly or loosely the model should group embeddings of the
same class versus those of different classes.

However, besides similar, the two loss functions (Equations 10.2 and 10.3) are not
equivalent. In Lsup

in , the summation of positives is located inside of the log, while in Lsup
out ,

it is outside. As mathematically discussed and experimentally evaluated in [143], Lsup
out

presents the best results and Lsup
out >= Lsup

in by the Jensen’s Inequality [129].

10.2 Proposed Method
The proposed contextual loss is based on the supervised contrastive loss [143], more

specifically the one defined by Equation 10.2. Among the various factors that significantly
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impact the performance of a loss function, the similarity measurement is a crucial one.
Accurately measuring the similarity between elements helps to quantify the difference
between the predicted values and the actual values. This measurement guides the learning
process, enabling the model to make more accurate predictions.

10.2.1 Pairwise Similarity and Contextual Information

Originally, the similarity between two elements of indexes i and p is computed
considering the dot product of their embeddings [143] denoted by zi and zp. This operation
is equivalent to cosine similarity if both embeddings are normalized. Normalizing a vector
means dividing each component of the vector by the magnitude of the vector, resulting in
a vector of length one. Therefore, we can define a function that computes the similarity
between embeddings as done in the original loss: sim(zi, zp) = zi · zp.

Pairwise measures have been widely employed in various cases. However, they are
limited in multiple scenarios since they often ignore contextual similarity information [246].
The concept of “contextual information” is overly used in the literature with different
meanings. In this work, the term “contextual information” is used to describe the process
of exploiting the information given by the closest neighboring elements of a given item to
calculate a more accurate similarity measure. The following subsection provides a definition
and discussion of the neighborhood set.

10.2.2 Neighborhood Definition

Let C = {obj1, obj2, . . . , objn} be an image collection. Let zi denote an embedding
for the image obji in a metric space Rd, where d is the size of the embedding (number of
dimensions). Based on the comparison between embeddings, an ordered list of nearest
neighbors can be computed. Let sim: Rd × Rd → R be a function that computes the
similarity between two images according to their corresponding embeddings (i.e., cosine
distance). Formally, the cosine similarity between two images obji, objj is defined by
sim(zi, zj).

For a given anchor obji ∈ C, the set of the k nearest neighbors (kNN) of obji,
denoted by NNk(obji), contains the k most similar images to obji in the collection C. Let
|NNk(xi)| = k, where | · | denotes the cardinality of the set. For every xj ∈ NNk(xi) and
every xl /∈ NNk(xi), it holds that d(xi, xj) ≤ d(xi, xl). Additionally, we define NNY

k (obji)
as the subset of NNk(obji) where each image belongs to the same class Y as obji. This
subset can be expressed as: NNY

k (obji) = {x ∈ NNk(obji) | class(x) = Y}. This definition
ensures that NNY

k (obji) exclusively contains images from class Y .
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10.2.3 Contextual Similarity and Symmetry Discussion

Based on the idea of using contextual information to improve the similarity between
elements and the neighborhood definition, we propose a novel contextual similarity measure:

simctx (zp, zi, k) = 1
|NNY

k (i)|
×

∑
j∈NNk(i)

sim (zp, zj) , (10.4)

where zp and zi are the embeddings being compared and k ∈ R+ is a scalar value that
defines the neighborhood size. The function sim is the dot product operation between
the two embeddings, defined by sim(zi, zp) = zi · zp. However, the result of simctx for the
pairs (zp, zi) and (zi, zp) is not symmetric, which is an important aspect in this scenario.
Therefore, to ensure symmetry, we propose to sum the symmetric pairs, each raised to the
power of 2:

simsym
ctx (zp, zi, k) = simctx (zp, zi, k)2 + simctx (zi, zp, k)2 . (10.5)

The importance of using the squared is further discussed in the next subsections.

10.2.4 Neighborhood Size and Logarithmic Decay

The neighborhood size, which is defined by the scalar k ∈ Z+ is of fundamental
importance in the approach, since it defines the number of elements to be considered by
the contextual similarity in Equations 10.4 and 10.5. However, the optimal value of k
tends to vary throughout the training process. In the beginning, larger adjustments are
necessary for the network weights, while towards the end, smaller adjustments are required.
This can be explained by the inherent convergence of the learning process and also by the
decay of the learning rate, which follows a cosine function in this work.

Let kstart be the initial value of k for the first epoch, ξ ∈ Z+ be the
current epoch, and ξtotal the total number of epochs to run. The value of k is
computed according to a logarithmic decay across epochs, defined as follows: k =
max

(
1, round((1− logξtotal

(ξ)) · kstart)
)
, where round is a function that returns the nearest

integer to a given real number.

10.2.5 Proposed Contextual Contrastive Loss (CCL)

The distance of a point P (a, b, c) in a 3D space to the origin O(0, 0, 0) is given
by the square root of the sum of three terms squared (i.e,

√
a2 + b2 + c2). In the context

of our proposal, we can use this equation to define the contextual contrastive similarity
between i and p: simccl (zi, zp, k) =

√
sim (zi, zp)2 + simctx (zi, zp, k)2 + simctx (zp, zi, k)2.

Using all the previous definitions, this can be simplified as:
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simccl (zi, zp, k) =
√

sim (zi, zp)2 + simsym
ctx (zp, zi, k), (10.6)

where the result of simccl is the same for symmetric pairs.

With simccl, the complete equation of our proposed contextual contrastive loss
(CCL) is:

Lccl =
∑
i∈I

Lccl
i =

∑
i∈I

−1
|P (i)|

∑
p∈P (i)

log exp (simccl (zi, zp) /ψ)∑
a∈A(i) exp (simccl (zi, za) /ψ) , (10.7)

where the variable k is omitted for readability proposes.

Aiming at illustrating the proposed loss, a visualization was created to show the
distribution of elements by their distances at the beginning and end of the training process
when considering our proposed approach that uses contextual similarity information.
Figure 10.1 presents the pairs of images considered as references. Figure 10.2 shows the
plots for the same (blue) and different (red) classes. Each plot contains 1000 dots, which
correspond to the top-1000 nearest neighbors of obji. Each dot represents a distinct image,
and its position is determined based on the distance from the reference images.

Initially, the distributions are completely chaotic as shown in both (a) and (c).
Notice that as training enhances the separability between classes, in (b), the dots tend to
align in a line from bottom to top, left to right. Conversely, in (d), they tend to form a
line from bottom to top, right to left.

(a) Similar reference images (b) Dissimilar reference images

Figure 10.1 – MiniImageNet images used as references for the bidimensional space plots.

10.2.6 Proposed Training Workflow

This section explains the workflow of the proposed approach and all its steps from
training to testing, including how the proposed CCL is used by the metric learning model.
Figure 10.3 presents an overview of the four steps that compose our framework, which
is divided into two main categories: (i) metric learning: given image data, it learns new
embedding representations based on the contrastive loss; and (ii) classification: where
a linear model is trained using the binary cross-entropy loss to classify the embeddings
according to their classes.



Chapter 10. Contextual Contrastive Loss (CCL) 197

0.02 0.04 0.06 0.08 0.10 0.12
Distance from Image i

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Di
st

an
ce

 fr
om

 Im
ag

e 
j

Bidimensional Spaces: Similar Images (Beginning of Training)
MiniImageNet Images

(a) Similar Images: Start of Training

0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.0200 0.0225
Distance from Image i

0.005

0.010

0.015

0.020

0.025

Di
st

an
ce

 fr
om

 Im
ag

e 
j

Bidimensional Space: Similar Images (End of Training)
MiniImageNet Images

(b) Similar Images: End of Training
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(c) Dissimilar Images: Beginning of Training
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Figure 10.2 – Bidimensional space for similar and dissimilar images on the MiniImageNet dataset
at the start (10 epochs) and end (300 epochs) of training using the proposed CCL.
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Figure 10.3 – Workflow of the steps of the proposed approach.

The procedures are marked in blue color and the data, that flows (input/output)
between procedures are marked in gray. The steps of the workflow, marked in blue, are
the following:

1. Metric Learning Pretraining: A pretraining is conducted using the metric learning
model and the original supervised contrastive loss. The weights of this training are
later used to generate the neighborhood set and for training the metric learning
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model in step (3). For a fair comparison, this step is included for both the baseline
and ours.

2. Compute Neighborhood Sets: The neighborhood sets are computed based on
the features (i.e., embeddings) extracted by the pretrained model. The neighborhood
sets are computed according to the formulation in Section 10.2.2. Our approach is
efficient since the neighborhood sets are computed only once and do not need to be
recomputed.

3. Train Metric Learning with CCL: The metric learning receives RGB images as
input and learns embeddings (features) to represent them in a space of d dimensions.
In this work, all embeddings are generated with 128 positions. The metric learning
step uses the proposed CCL for learning more accurate representations. To calculate
the similarity with the nearest neighbors, a set of features is considered. This feature
set is updated each epoch with the features generated for the batches in every
iteration within that epoch. If an image appears more than once, only the most
recent feature from it is used to update the feature set.

4. Classification: A linear classification model is trained using the embeddings learned
by the metric learning model. This model is used to predict the labels for the test
set. The accuracy is computed and reported on the test set.

10.3 Experimental Evaluation
In this section, we describe the protocol and present both the quantitative

and qualitative results obtained. Our proposed CCL loss is frequently compared with
SupCon [143] because it is based on it. Additionally, we include comparisons with
SimCLR [47], which, although unsupervised, was also compared to SupCon [143]
in its original publication [143]. Three datasets were considered: Food101 [33],
MiniImageNet [345], and CIFAR-100 [150]. These datasets were selected because a higher
volume of images and larger classes are typically used to evaluate contrastive learning
approaches. More detailed information about the datasets and effectiveness measures is
presented in Chapter 4.

Table 10.1 presents the default hyperparameters used for the metric learning
model and linear classifier model. Most of the parameters were adopted according to the
Supervised Contrastive Loss (SupCon) implementation 15, which CCL is based on. We
adopted the same parameters for CCL and SupCon loss to make a fair comparison and to
ensure consistency. The parameters that are specific to our approach are marked with a
star symbol*.
15 github.com/HobbitLong/SupContrast

github.com/HobbitLong/SupContrast
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Table 10.1 – Neural network architecture and default hyperparameters utilized in the evaluation.

Parameter Metric Learning Downstream Classifier
Architecture ResNet-18 Linear Classifier
Loss Function Contrastive Cross-entropy
Batch Size 128 128
Epochs (ξ) 100 20
Pre-Training Epochs* 10 —
Neighborhood Size (k)* 50 —
Temperature (ψ) 0.1 —
Image Resolution Augmented 32× 32 Crop Resized to 64× 64
Output Feature Size (d) 128 —
Learning Rate 0.5 5
Cosine Learning Rate Decay True True
Learning Rate Warmup True True
Weight Decay 10−4 0
Momentum 0.9 0.9
Optimizer Stochastic gradient descent (SGD) Stochastic gradient descent (SGD)

Among the parameters, an experiment was conducted to evaluate two crucial ones:
the batch size and the neighborhood size (k). These experiments were conducted on the
Food101 dataset, which is the largest one, with a random split of 20% of images for training.
Batch size plays a crucial role in contrastive learning, which hinges on comparing different
data samples to learn distinctive features. A larger batch size provides more diverse
sample pairs, enhancing the model’s ability to generalize and distinguish between features.
However, it must be carefully chosen to balance the quality of the learned representations.
Table 10.2 presents the accuracy for different batch sizes for both SupCon [143] and CCL.
Notably, there is a significant increase in accuracy when the batch size changes from 64 to
128; beyond this point, the accuracy begins to stabilize. Also, our CCL presented gains
in all cases. These results are plotted in Figure 10.4, where the dashed line indicates the
default batch chosen.

Table 10.2 – Impact of batch size on accuracy (%) on Food101 dataset, considering a split of
20% for training.

Batch Analysis: Acc. (%) on Food101
Batch SupCon CCL Relative
Size [143] (ours) Gain
64 42.07 44.02 +4.635%
128 49.05 53.34 +8.746%
192 51.33 54.66 +6.487%
256 52.41 52.87 +0.878%
Avg. 48.71 51.22 +5.190%

Table 10.3 presents the analysis of the parameter k. It is observed that k = 70 is
the best setting in most cases. However, the variation in results across different k values is
small, suggesting that CCL is robust to different choices of k. Also, for 300 epochs, an
even smaller k can be considered. Therefore, we adopted k = 70 for all cases and k = 30
for 300 epochs in the remaining experiments.
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Figure 10.4 – Accuracy (%) on the test set for different batch sizes.

Table 10.3 – Impact of parameter k (neighborhood size) on accuracy (%). Results highlighted in
gray deviate less than 0.20 from the best value in bold.

k Analysis: Accuracies (%) on Food101 dataset
Train Epochs SupCon [143] k=30 k=50 k=70 k=90

100 48.32 51.19 53.14 54.10 53.78
20% 200 56.50 58.59 58.96 58.80 58.69

300 58.11 59.86 59.40 58.87 58.44
100 62.47 64.68 65.65 65.86 65.95

40% 200 67.30 68.27 68.66 68.72 68.30
300 68.02 68.95 68.97 68.80 68.59

Average 60.12 61.92 62.46 62.53 62.29

With all the parameters and protocol set, an evaluation was conducted considering
various training splits (20%, 40%, 60%, and 80%) to assess the robustness of CCL for
100 training epochs when compared to SimCLR [47] and SupCon [143]. For each training
percentage, three different splits were randomly generated. These same splits were used
when comparing our loss function to others. The results are presented as the mean accuracy
and a 95% confidence interval across the three splits. Table 10.4 presents the accuracy
results for the three evaluated datasets: Food101, MiniImageNet, and CIFAR-100. The
results reveal gains in all cases, especially with fewer training data which is a more
challenging scenario.

For the Food101 dataset, the most extensive dataset included in our evaluation,
we conducted experiments for 100, 200, and 300 epochs. Table 10.5 shows improvements
across all scenarios. These results reveal a significant benefit of our method: it achieves
superior performance in situations with limited training data and fewer epochs, which
reveals the potential of our method in resource-constrained scenarios. Additionally, CCL
with 200 epochs achieves better results than SupCon with 300 epochs in all cases. To
better illustrate the advantages of CCL compared to SupCon [143], Figure 10.5 displays
the accuracies on the test set during training. For 185 epochs, CCL reaches the accuracy
that SupCon achieves in 300.
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Table 10.4 – Accuracies (%) achieved for 100 epochs of training, comparing the proposed
CCL with other contrastive losses (i.e., SimCLR [47] and SupCon [143]), across
four training set sizes on three datasets. The relative gains compare CCL with
SupCon [143].

Dataset Loss Dataset percentages used for (training,testing) Average
(20%, 80%) (40%, 60%) (60%, 40%) (80%, 20%) Values

Food101

SimCLR [47] 31.889 ± 1.974 39.920 ± 0.149 44.246 ± 0.724 47.108 ± 0.937 40.791
SupCon [143] 48.369 ± 0.515 62.346 ± 0.504 68.649 ± 0.300 71.998 ± 0.459 62.841
CCL (ours) 53.573 ± 0.347 65.672 ± 0.368 71.074 ± 1.010 73.920 ± 0.935 66.060
R. Gain +10.759% +5.335% +3.532% +2.670% +5.574%

MiniImageNet

SimCLR [47] 37.909 ± 0.393 48.197 ± 0.244 54.148 ± 1.735 58.427 ± 1.121 49.670
SupCon [143] 53.466 ± 1.133 67.269 ± 0.537 73.429 ± 0.949 77.454 ± 0.793 67.905
CCL (ours) 57.231 ± 1.194 69.263 ± 0.104 74.787 ± 0.645 78.217 ± 0.982 69.875
R. Gain +7.042% +2.964% +1.849% +0.985% +3.210%

CIFAR-100

SimCLR [47] 36.595 ± 2.503 46.018 ± 0.324 51.427 ± 0.426 54.740 ± 1.502 47.195
SupCon [143] 56.133 ± 1.614 68.089 ± 0.758 73.347 ± 0.545 76.383 ± 0.562 68.488
CCL (ours) 58.813 ± 0.116 69.748 ± 0.124 74.753 ± 0.496 77.613 ± 1.283 70.232
R. Gain +4.774% +2.437% +1.917% +1.610% +2.685%

Average Gain +7.525% +3.579% +2.433% +1.755% +3.823%

Table 10.5 – Accuracies (%) achieved on the Food101 dataset when comparing the proposed
CCL against SupCon [143], for different training epochs.

Analysis of the number of epochs on the Food101 dataset
Epochs Loss Dataset percentages used for (training, testing) Average

(20%, 80%) (40%, 60%) (60%, 40%) (80%, 20%) Values

100
SupCon [143] 48.369 ± 0.515 62.346 ± 0.504 68.649 ± 0.300 71.998 ± 0.459 62.841
CCL (ours) 53.573 ± 0.347 65.672 ± 0.368 71.074 ± 1.010 73.920 ± 0.935 66.060
R. Gain +10.759% +5.335% +3.532% +2.670% +5.574%

200
SupCon [143] 56.116 ± 0.836 67.164 ± 0.656 72.102 ± 1.082 74.787 ± 1.418 67.542
CCL (ours) 58.392 ± 0.636 68.657 ± 0.324 73.113 ± 0.709 75.748 ± 0.707 68.978
R. Gain +4.056% +2.223% +1.402% +1.285% +2.242%

300
SupCon [143] 57.981 ± 0.285 68.093 ± 0.345 72.738 ± 1.023 75.498 ± 0.200 68.578
CCL (ours) 59.589 ± 0.626 69.094 ± 0.228 73.253 ± 1.023 75.691 ± 0.806 69.406
R. Gain +2.773% +1.470% +0.708% +0.256% +1.302%

Average Gain +5.863% +3.009% +1.881% +1.404% +3.039%
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Figure 10.5 – Accuracy (%) on the test set across epochs comparing SupCon to CCL.
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Finally, we present a qualitative result. A t-SNE projection was generated on the
Food101 dataset considering 9 random classes. Figure 10.6 presents the results considering
the features from the SupCon loss and our proposed (CCL) loss, which were extracted
from the linear classification model on the test set. Each color represents a different class.
Notice that our approach, shown in plot (b), presents better separability of classes. In
plot (a), for example, the orange group is barely visible, groups yellow and pink overlap
significantly. Additionally, other groups, such as the red and gray, are situated closer to
the others. All these cases were improved in plot (b).
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Figure 10.6 – t-SNE visualization for 9 classes comparing the features of the original method to
CCL on the Food101 dataset with 20% of training data.
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11 Conclusions

This chapter concludes this dissertation by discussing the contributions and other
relevant aspects. Section 11.1 reviews the main results obtained for each task: query
performance prediction, image retrieval, and image classification. Additionally, it provides
a comparative analysis of the proposed methods alongside other approaches from the
literature. Section 11.2 discusses how the contributions address the research questions
of this study. Section 11.3 lists the publications and submissions obtained, along with
the international Fulbright fellowship. Section 11.4 mentions the available codes for the
proposed approaches. Finally, Section 11.5 presents potential extensions and future work,
describing their connections to the contributions achieved in this research.

11.1 Discussion of Results
Given the notable outcomes achieved by contextual similarity learning across all

scenarios considered, this section discusses the results for each task. For query performance
prediction, the results of RQPPF and DRNE are jointly compared and discussed in
Section 11.1.1. Section 11.1.2 compares the approaches evaluated for image retrieval in
person Re-ID and general-purpose datasets, including comparisons with the state-of-the-art.
Section 11.1.3 overviews Manifold-GCN and RFE semi-supervised classification results
obtained and a comparison with the state-of-the-art. Moreover, the gains achieved by CCL
are briefly discussed.

11.1.1 Query Performance Prediction

A great variety of experiments was conducted to evaluate DRNE and RQPPF,
showing their capacity to effectively perform QPP in various datasets. Table 11.1 presents
a summary of the relative gains for both approaches in comparison to Authority [243] and
Reciprocal Density [248], which are used as baselines. Notice that RQPPF provided gains
in all the evaluated scenarios, while DRNE showed inferior performance in some cases,
especially when compared to Reciprocal in the MPEG-7 dataset. However, for the most
part, DRNE provided higher and more consistent gains when compared to Reciprocal.
Specifically for the AIR descriptor, DRNE revealed superior results in all cases.

In general, the results showed that the proposed methods are better than the
baselines in most cases. Additionally, the choice of the best method depends not only on
the dataset but also on the descriptor. RQPPF is more flexible and also uses Authority
and Reciprocal as part of its formulation, while DRNE does not. However, DRNE seems
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more robust to outlier descriptors, while RQPPF does not. Among potential extensions,
combining DRNE and RQPPF is one of the possibilities for future work.

Table 11.1 – Relative gains of DRNE and RQPPF when compared to Authority (Auth.) and
Reciprocal Density (Rec.). Average gains are reported for each dataset.

Descriptor Original Compared to Auth. [243] Compared to Rec. [248]
MAP DRNE RQPPF DRNE RQPPF

MPEG-7
AIR [103] 89.39% +14.81% +3.50% +16.84% +12.99%
ASC [191] 85.28% -2.50% +3.76% -8.29% +1.84%
IDSC [190] 81.70% -3.93% +3.69% -7.58% +1.88%
CFD [244] 80.71% +3.47% +3.99% -1.24% +2.71%
BAS [13] 71.52% +0.85% +3.69% -5.13% +1.09%
SS [317] 37.67% +7.08% +6.01% +3.32% +3.52%

Average Gain +3.30% +4.11% -0.35% +4.01%
Brodatz

LAS [308] 75.15% +7.50% +9.01% +9.59% +11.15%
CCOM [148] 57.57% +3.30% +7.33% +8.60% +11.18%
LBP [231] 48.40% +0.75% +5.10% +18.42% +15.36%

Average Gain +3.85% +7.15% +12.20% +12.56%
Market

OSNET [436] 43.30% -2.63% +1.19% +5.40% +5.45%
ResNet [110] 22.82% -0.89% +0.13% +7.95% +5.29%

Average Gain -1.76% +0.66% +6.68% +5.37%
Duke

OSNET [436] 52.69% +0.71% +2.35% +1.00% +3.37%
ResNet [110] 32.00% -2.14% +0.52% -0.12% +2.46%

Average Gain -0.72% +1.44% +0.44% +2.92%

11.1.2 Image Retrieval

Four of the seven proposed methods were evaluated in image retrieval: HRSF,
JaccardMax, RFE, and Manifold-GCN. The results obtained are reviewed for both person
Re-ID and general-purpose datasets, including comparisons against each other and with
the state-of-the-art. A brief discussion about the gains is also presented.

• Person Re-ID

Considering the wide variety of descriptors employed and to provide a fair
comparison, Table 11.2 presents the best results obtained for each method using only the
OSNET model and its variants (i.e., OSNET, OSNET-IBN, and OSNET-AIN) on Market,
DukeMTMC, and CUHK03 datasets.

For the Market and CUHK03 datasets, HRSF leads with the best results for both
R1 and MAP. HRSF is the only method that performs selection, which is an advantage
over the others since it can select the best combination of descriptors among the OSNET
variants. For the DukeMTMC dataset, RFE and JaccardMax compete for the best results.
The worst results in this table are the ones obtained by the Manifold-GCN. Besides
Manifold-GCN being semi-supervised, while all the other approaches are unsupervised,
this result highlights the importance of future research for this method. Since it was mainly
proposed for classification, the results for retrieval are significantly behind others, probably
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due to the features not being properly distributed in the latent space, which requires
further investigation in future work.

Table 11.3 presents the methods ranked according to their results for each measure
and dataset. The average rank reveals that, while HRSF shows the best results in most
cases, JaccardMax and RFE follow closely, with average ranks of 2.0 and 2.2, respectively.
As previously discussed, Manifold-GCN is behind with an average rank of 3.7.

Table 11.2 – Comparison between the proposed approaches on person Re-ID considering MAP
(%) and R-01 (%). The best results obtained with the OSNET descriptor and its
variants are reported.

Datasets
Method Year Market1501 DukeMTMC CUHK03

R1 MAP R1 MAP R1 MAP
HRSF (X∗, best result) [331] 2022 75.71 62.94 77.24 68.88 39.04 39.69
Correlation Graph + Jaccard Max [324] 2022 73.25 59.84 76.21 69.27 — —
RFE [334] 2023 72.42 59.51 77.69 69.21 36.89 39.24
Manifold-GCN [333] 2023 70.30 57.48 74.22 65.83 35.19 35.99

Table 11.3 – Proposed approaches on person Re-ID ranked according to their effectiveness (R1
and MAP). The best results obtained with the OSNET descriptor and its variants
were considered.

Datasets
Method Year Market1501 DukeMTMC CUHK03 Average

R1 MAP R1 MAP R1 MAP Rank
HRSF (X∗, best result) [331] 2022 1 1 2 3 1 1 1.5
Correlation Graph + Jaccard Max [324] 2022 2 2 3 1 — — 2.0
RFE [334] 2023 3 3 1 2 2 2 2.2
Manifold-GCN [333] 2023 4 4 4 4 3 3 3.7

To compare the proposed methods with the state-of-the-art in person Re-ID, which
is presented in Table 11.4, the best results for each approach were considered. For HRSF,
JaccardMax, and RFE the best results used OSNET and its variants. Unlike the others,
the JaccardMax evaluation employed the TransReID descriptor, which provided better
results for this method. This table highlights in bold the highest value for each column.
The best among our methods is also highlighted. All the baseline results are the ones
reported in the literature, following the same protocol as ours.

In general, it can be observed that the proposed approaches provide better results
for MAP than R1 when compared to other methods. This evinces that they can significantly
improve the top positions of ranked lists, but not necessarily achieve the best results when
considering only the first position. In this case, Market1501 was revealed as the most
challenging dataset, where the proposed methods are better or comparable to the ones up
to 2020. After that, the baselines show a considerable improvement. In contrast, for the
DukeMTMC dataset, the MAP of 73.96% obtained by the proposed JaccardMax (2022) is
the best result achieved, surpassed only by VAL-PAT, which is a very recent approach
from 2023. For the CUHK03 dataset, many of the methods have no results reported in
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Table 11.4 – Proposed approaches compared to state-of-the-art on person Re-ID considering
MAP (%) and R-01 (%).

Datasets
Method Year Market1501 DukeMTMC CUHK03

R1 MAP R1 MAP R1 MAP
Unsupervised Methods

ARN [181] 2018 70.3 39.4 60.2 33.4 — —
EANet [118] 2018 66.4 40.6 45.0 26.4 51.4 31.7
TAUDL [170] 2018 63.7 41.2 61.7 43.5 44.7 31.2
ECN [431] 2019 75.1 43.0 63.3 40.4 — —
MAR [397] 2019 67.7 40.0 87.1 48.0 — —
UTAL [171] 2019 69.2 46.2 62.3 44.6 56.3 42.3
SSL [189] 2020 71.7 37.8 52.5 28.6 — —
HCT [402] 2020 80.0 56.4 69.6 50.7 — —
CAP [353] 2021 91.4 79.2 81.1 67.3 — —
IICS [376] 2021 89.5 72.9 80.0 64.4 — —
RLCC [415] 2021 90.8 77.7 83.2 69.2 — —
ICE [43] 2021 93.8 82.3 83.3 69.9 — —
MGH [368] 2021 93.2 81.7 83.7 70.2 — —
MGCE-HCL [297] 2022 92.1 79.6 82.5 67.5 — —
MCRN [367] 2022 92.5 80.8 83.5 69.9 — —
O2CAP [354] 2022 92.5 82.7 83.9 71.2 — —
DIDAL [201] 2023 94.2 84.8 — — — —
VAL-PAT [23] 2023 — — 86.1 74.9 — —

Domain Adaptative Methods
HHL (D,M) [430] 2018 62.2 31.4 46.9 27.2 — —
HHL (C03) [430] 2018 56.8 29.8 42.7 23.4 — —
ATNet (D,M) [197] 2019 55.7 25.6 45.1 24.9 — —
CSGLP (D,M) [273] 2019 63.7 33.9 56.1 36.0 — —
ISSDA (D,M) [306] 2019 81.3 63.1 72.8 54.1 — —
ECN++ (D,M) [432] 2020 84.1 63.8 74.0 54.4 — —
MMCL (D,M) [348] 2020 84.4 60.4 72.4 51.4 — —
JVCT+ (D,M) [44] 2021 90.5 75.4 81.9 67.6 — —
MCRN (D,M) [367] 2022 93.8 83.8 84.5 71.5 — —

Cross-Domain Methods (single-source)
EANet (C03) [118] 2018 59.4 33.3 39.3 22.0 — —
EANet (D,M) [118] 2018 61.7 32.9 51.4 31.7 — —
SPGAN (D,M) [71] 2018 43.1 17.0 33.1 16.7 — —
DAAM (D,M) [121] 2019 42.3 17.5 29.3 14.5 — —
AF3 (D,M) [195] 2019 67.2 36.3 56.8 37.4 — —
AF3 (MT) [195] 2019 68.0 37.7 66.3 46.2 — —
PAUL (MT) [380] 2019 68.5 40.1 72.0 53.2 — —

Cross-Domain Methods (multi-source)
CAMEL [396] 2017 54.5 26.3 — — 31.9 —
EMTL [370] 2018 52.8 25.1 39.7 22.3 — —
Baseline by [153] 2019 80.5 56.8 67.4 46.9 29.4 27.4

Proposed Methods (contributions)
HRSF (X∗, best result) [331] 2022 75.71 62.94 77.24 68.88 39.04 39.69
Correlation Graph + Jaccard Max [324] 2022 75.42 63.53 78.59 73.96 — —
RFE [334] 2023 72.42 59.51 77.69 69.21 36.89 39.24
Manifold-GCN [333] 2023 70.30 57.48 74.22 65.83 35.19 35.99

the literature, since this dataset is not as commonly evaluated as the others. However, all
methods provided a better MAP than the baselines, being only behind UTAL.

The presented comparisons raise two topics for discussion: (i) Why the obtained
results are significantly better in DukeMTMC? Why does Market1501 appear to be
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considerably more difficult? (ii) RFE and CG [249] + JaccardMax exhibit close results
when using the same descriptors for Re-ID. Is this also true in other scenarios?

The first topic is challenging to answer, especially because Market1501 and
DukeMTMC datasets have very similar characteristics (e.g., dataset size, number of
individuals, images per person, size of the train and evaluation sets, and number of
cameras). However, one particular difference might explain it. The Market1501 dataset
was annotated using an automated detector, the Deformable Part Model (DPM), which is
known to be prone to noise and potential misalignment. Conversely, the DukeMTMC was
manually annotated by humans providing cleaner data with well-aligned bounding boxes.
Further investigation to address this aspect can be conducted as future work.

Regarding the close results of RFE and CG [249] + JaccardMax for Re-ID, these
methods are compared on general-purpose datasets to evaluate if they exhibit similar
behavior.

• General-Purpose Datasets

Tables 11.5 and 11.6 compare RFE and CG [249] + JaccardMax with the
state-of-the-art in image retrieval tasks for the datasets Holidays and UKBench, respectively.
In both datasets, RFE outperformed all the baselines. For Holidays, CG [249] + JaccardMax
is behind RFE with 91.12% but still surpasses most of the other methods. In contrast,
for UKbench, both achieved the same result of 3.97, which is very close to the maximum
score (i.e., 4).

Table 11.5 – State-of-the-art (SOTA) comparison on Holidays dataset (MAP).

MAP for state-of-the-art methods
Jégou Tolias Paulin Qin Zheng Sun Zheng

et al. [127] et al. [315] et al. [238] et al. [268] et al. [425] et al. [299] et al. [423]
75.07% 82.20% 82.90% 84.40% 85.20% 85.50% 85.80%

Pedronette Arandjelovic Li Razavian Pedronette Gordo Valem
et al. [241] et al. [12] et al. [178] et al. [271] et al. [253] et al. [104] et al. [329]

86.16% 87.50% 89.20% 89.60% 90.02% 90.30% 90.51%
Valem Liu Pedronette Pedronette Yu Berman

et al. [328] et al. [203] et al. [251] et al. [252] et al. [398] et al. [26]
90.51% 90.89% 90.94% 91.25% 91.40% 91.80%

Proposed Approaches
CG + JacMax RFE

91.12% 91.97%
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Table 11.6 – State-of-the-art (SOTA) comparison on UKBench dataset (NS-Score).

N-S-Scores for state-of-the-art methods
Qin Zhang Zheng Bai Xie Lv Liu Pedronette

et al. [267] et al. [413] et al. [424] et al. [16] et al. [371] et al. [210] et al. [203] et al. [241]
3.67 3.83 3.84 3.86 3.89 3.91 3.92 3.93

Bai Liu Valem Bai Valem Valem Chen
et al. [20] et al. [159] et al. [328] et al. [17] et al. [329] et al. [327] et al. [50]

3.93 3.93 3.93 3.94 3.94 3.95 3.96

Proposed Approaches
CG + JacMax RFE

3.97 3.97

• Discussion about Gains

From the observed results, we can notice that the proposed approaches are
comparable or better than state-of-the-art approaches in most cases. The best method
in each scenario varies since each dataset and descriptor presents different aspects. An
important attribute of the proposed approaches is their capacity to improve the input
data by employing contextual similarity learning. Figure 11.1 presents the relative gains
of RFE and JaccardMax for different datasets and descriptors. This demonstrates the
capacity of contextual similarity learning to improve the results across multiple scenarios.
The Holidays and UKBench datasets exhibited smaller gains because their descriptors
already achieved higher results, making further enhancements more challenging compared
to other datasets. Despite this, it is impressive that, despite the advancements in feature
extraction, for different deep learning models from CNNs to Vision Transformers, the
potential to obtain improved results was achieved across all cases.
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11.1.3 Image Classification

Since both Manifold-GCN and RFE were employed for semi-supervised classification,
Table 11.7 compares them to baselines, both traditional and recent, on Flowers and Corel5k
datasets. The values achieved by Manifold-GCN are the highest in all the cases, and they
are closely followed by RFE. These results reveal the high effectiveness of the proposed
approaches that, besides the significant gains, are also comparable or superior to various
methods in the literature.

Table 11.7 – Accuracy comparison (%) for baselines on Flowers and Corel5k datasets. We
compared the proposed RFE and Manifold-GCN with semi-supervised classification
baselines. The methods are compared with different input features. The results of
our methods are highlighted with a gray background; the best results for each pair
of features and dataset are marked in bold.

Method Input Flowers Corel5k
CoMatch [169] Images 82.55 85.70
kNN 63.67 76.80
SVM [54] 80.54 88.73
OPF [8] 71.77 83.56
SL-Perceptron 75.44 83.56
ML-Perceptron 78.88 87.10
PseudoLabel+SGD [162] 82.69 89.76
LS+kNN [433] ResNet 73.49 83.98
LS+SVM [433, 54] Features 73.53 83.26
LS+OPF [433, 8] 72.66 82.32
LS+SL-Perceptron [433] 72.34 82.38
LS+ML-Perceptron [433] 73.03 82.53
GNN-LDS [90] 54.98 62.69
GNN-KNN-LDS [90] 79.32 88.94
WSEF [264] 85.12 91.68
RFE 84.95 91.54
Manifold-GCN 85.88 93.08

kNN 48.71 58.78
SVM [54] 73.30 85.89
OPF [8] 64.00 81.33
SL-Perceptron 71.84 82.28
ML-Perceptron 72.62 86.90
PseudoLabel+SGD [162] 76.87 89.85
LS+kNN [433] SENet 58.05 72.16
LS+SVM [433, 54] Features 59.84 72.79
LS+OPF [433, 8] 59.25 72.20
LS+SL-Perceptron [433] 59.27 72.19
LS+ML-Perceptron [433] 59.39 72.24
GNN-LDS [90] 52.24 65.80
GNN-KNN-LDS [90] 73.69 89.95
WSEF [264] 76.16 89.74
RFE 77.56 92.20
Manifold-GCN 78.82 92.79
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The CCL was also proposed and evaluated for classification but in supervised
scenarios. Since it is the only method proposed in this category and it uses different
datasets in the protocol, a direct comparison of it with other proposed methods is not
feasible. Therefore, a discussion about its gains is presented. The experimental evaluation
in Chapter 10 showed that the results are consistently better than those of SupCon, which
CCL is based on, and SimCLR, another method commonly used as a baseline in this
task. Figure 11.2 presents a plot that evinces the capacity of CCL to provide gains when
compared to SupCon for three datasets and with higher values as the training set size
decreases. The integration of contextual information within the contrastive loss significantly
improved the results, as initially hypothesized, with gains up to 10.759%.
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11.2 Contributions and Research Questions
This section discusses the interconnections between research questions and proposed

contributions. For the convenience of the reader, Table 11.8 presents a summary of all
research questions, using bullet points to indicate the proposed methods associated with
each.

1. How can contextual similarity information be used for selection and fusion in
unsupervised person Re-ID?
Discussion: HRSF performs selection and fusion of ranked lists from different
descriptors in person Re-ID. It aims to select and combine data that is complementary
and effective. The selection is based on measurements of correlation and query
performance prediction. The experimental results revealed the effectiveness of the
proposed approach.

2. How can data be modeled using contextual similarity information for query
performance prediction?
Discussion: Two approaches were proposed in this direction, DRNE and RQPPF.
They model data using ranked lists, that encode similarity information among items.
The DRNE creates “contextual images”, grayscale images where the intensity of pixels
is defined based on the positions of items in the ranked lists. The RQPPF implements
“contextual rank-based features”, computed considering reciprocal neighborhood,
effectiveness estimation measures (i.e., Authority or Reciprocal Density), and
positions in the ranked lists.

3. How can contextual similarity information be used to generate synthetic data?
Discussion: This work exploited the idea of generating synthetic ranked lists. The
elements are randomly generated according to the probabilities in the matrix. Various
aspects of the neighborhood and how the elements are distributed across ranked lists
can be encoded in this matrix. For example, the values in the diagonal can increase
or decrease the effectiveness of the ranked lists being generated.

4. How can contextual similarity learning be employed on synthetically generated data?
Discussion: Both DRNE and RQPPF address this question. The DRNE creates
“contextual images” which are submitted to a denoising network. The proposed model
is a variant of the Denoiser CNN, which returns a score for each contextual image. It
interprets the incorrectness of a ranked list as noise, which is learned by the network
during the training on synthetic data. In contrast, RQPPF models “contextual
rank-based features”. This approach is flexible and enables the application of various
regression models to estimate effectiveness measures using these meta-features.
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5. How can more complex structures, which encode contextual information more
effectively, be applied to unsupervised similarity learning?
Discussion: One example of a structure that can be used is the hypergraph, which
is well-suited for capturing more complex relationships in the data. Hypergraphs
are utilized by both HRSF and RFE. Hypergraphs are useful because they allow
edges to connect any number of vertices and can provide valuable insights. In these
approaches, each image is represented by a node. For RFE, it considers the idea
that similar objects present similar ranked lists and, therefore, similar hyperedges.
Once the hyperedges are represented by an incidence matrix, the product of the
hyperedges can be exploited to compute a more effective similarity measure between
nodes. HRSF proposes the HQPP for selection, which is based on the conjecture
that similar objects are expected to reference each other in the same hyperedge.
Therefore, hyperedges that concentrate a high number of ranking references on a
few nodes are expected to be more effective.

6. How can contextual information from similarity learning approaches be encoded to
generate embeddings that are useful for tasks beyond retrieval, such as classification?
Discussion: Generating embeddings is one of the key innovations of RFE. Connected
components (CCs) with high confidence are defined based on hypergraph structures.
These CCs are computed based on the most reliable edges identified through the
hyperedge weights. The CCs encode class information and result in objects in
the same CC to have their similarities increased. More effective embeddings are
computed for each dataset element considering their similarity to the identified
CCs. These generated embeddings were evaluated for classification. In contrast, the
Manifold-GCN can also export embeddings by using the output from the GCN layer
before softmax. This allowed Manifold-GCN to be applied for retrieval in person
Re-ID.

7. How can contextual similarity information be incorporated into the input graph
utilized by Graph Convolutional Networks (GCNs) and improve their classification
results?
Discussion: This question is addressed by Manifold-GCN. It uses manifold learning
re-ranking approaches that compute improved ranked lists that are used to build
a new graph (i.e., kNN or reciprocal kNN). The experimental evaluation revealed
that using this graph as the GCN input improved the classification results in all
evaluated scenarios (i.e., 5 different GCNs, 3 datasets, and 4 feature extractors).

8. Can rank-based information be utilized to measure the correlation between images
more effectively?
Discussion: As a variation of the Jaccard Index, the Jaccard Max was proposed.
Most rank-based measures are highly dependent on the neighborhood size parameter
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(k). This is mitigated by identifying the depth that presents the maximum Jaccard
index until a depth k. The main conjecture behind this approach is that a high
overlap between ranked lists, at any depth, should be considered a strong indication
of similarity.

9. Can a correlation measure be proposed and applied to enhance image retrieval with
manifold learning?
Discussion: The Jaccard Max was used in combination with the Correlation Graph
for manifold learning. The correlation measure was utilized to weigh the graph
edges. During the iterative thresholding process, for higher threshold values, only the
elements with a higher correlation are connected, and vice versa. When compared to
other correlation measures, Jaccard Max produced superior results.

10. How can contextual similarity information be incorporated into metric learning,
including its direct integration into losses such as contrastive loss?
Discussion: CCL replaces pairwise image comparison by introducing a new
contextual similarity measure using neighboring elements. The CCL yields a more
semantically meaningful image embedding ensuring better separability of classes in
the latent space. Experimental evaluation of three datasets has shown that CCL
yields superior results in classification accuracy, particularly for fewer training epochs
and limited training data.

Table 11.8 – Research questions addressed by each of the proposed approaches.
Proposed Methods

Summarized Research Question D
R
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1. Unsupervised selection and fusion in Re-ID? •
2. Model data with contextual information for QPP? • •
3. Create synthetic data with contextual similarity? • •
4. Contextual similarity learning using synthetic data? • •
5. How to apply more complex structures in unsupervised similarity learning? • •
6. How can embeddings be generated for different tasks? • •
7. Improve GCN input graph for better classification? •
8. More effective rank-based correlation measure? •
9. Correlation measure with manifold learning? •
10. Similarity information into contrastive loss? •
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11.3 Publications and International Fellowship
During the period of this doctorate, a total of 27 publications and submissions

were produced. This section lists all publications, submissions, and works under review
submitted to both conferences and international scientific journals. The first-authored
publications, associated with Chapters 5 through 10 of this text, are:

1. Lucas Pascotti Valem, Daniel Carlos Guimarães Pedronette, and Mohand Said
Allili. Contrastive Loss based on Contextual Similarity for Image Classification. In 19th
International Symposium on Visual Computing (ISVC), 2024.
Status: Submitted [325].

2. Lucas Pascotti Valem, Vanessa Helena Pereira Ferrero, and Daniel Carlos Guimarães
Pedronette. Self-supervised regression for query performance prediction on image retrieval.
In 2023 IEEE Sixth International Conference on Artificial Intelligence and Knowledge
Engineering (AIKE), pages 95–98, Los Alamitos, CA, USA, sep 2023.
Status: Published [336].

3. Lucas Pascotti Valem, Daniel Carlos Guimarães Pedronette, and Longin Jan Latecki.
Rank flow embedding for unsupervised and semi-supervised manifold learning. IEEE
Transactions on Image Processing, 32:2811–2826, 2023.
Status: Published [334].

4. Lucas Pascotti Valem, Daniel Carlos Guimarães Pedronette, and Longin Jan Latecki.
Graph convolutional networks based on manifold learning for semi-supervised image
classification. Computer Vision and Image Understanding, 227:103618, 2023.
Status: Published [333].

5. Lucas Pascotti Valem and Daniel Carlos Guimarães Pedronette. Person re-id through
unsupervised hypergraph rank selection and fusion. Image Vision Computing, 123(C),
2022.
Status: Published [331].

6. Lucas Pascotti Valem, Vinicius Atsushi Sato Kawai, Vanessa Helena Pereira-Ferrero,
and Daniel Carlos Guimarães Pedronette. A novel rank correlation measure for manifold
learning on image retrieval and person re-id. In 2022 IEEE International Conference on
Image Processing (ICIP), pages 1371–1375, 2022.
Status: Published [324].

7. Lucas Pascotti Valem and Daniel Carlos Guimarães Pedronette. A denoising
convolutional neural network for self-supervised rank effectiveness estimation on image
retrieval. In Proceedings of the 2021 International Conference on Multimedia Retrieval,
ICMR ’21, page 294–302, New York, NY, USA, 2021.
Status: Published [330].
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Resulting from works in collaboration, directly or indirectly related to contextual
similarity learning and person Re-ID, there are 20 works published or accepted, listed
from the most recent to the earliest:

1. V. H. P. Ferrero, T. G. Lewis, L. P. Valem, L. G. P. Ferrero, D. C. G. Pedronette, L. J.
Latecki. Unsupervised Affinity Learning based on Manifold Analysis for Image Retrieval:
A Survey. Computer Science Review, 2024.
Status: Published [256].

2. Gustavo Rosseto Leticio, Vinicius Sato Kawai, Lucas Pascotti Valem, Daniel Carlos
Guimarães Pedronette, Ricardo da S. Torres. Manifold information through neighbor
embedding projection for image retrieval. Pattern Recognition Letters, 2024.
Status: Published [167].

3. Vinicius Sato Kawai, Lucas Pascotti Valem, Alexandro Baldassin, Edson Borin, Daniel
Carlos Guimarães Pedronette, Longin Jan Latecki. Rank-based Hashing for Effective and
Efficient Nearest Neighbor Search for Image Retrieval. ACM Transactions on Multimedia
Computing, Communications, and Applications, 2024.
Status: Published [138].

4. V. H. P. Ferrero, L. P. Valem, G. R. Leticio, D. C. G. Pedronette. Feature Fusion and
Augmentation based on Manifold Ranking for Image Classification. International Journal
of Semantic Computing (IJSC), 2024.
Status: Accepted, to appear [258].

5. João Gabriel Camacho Presotto, Lucas Pascotti Valem, Nikolas Gomes de Sá, Daniel
Carlos Guimarães Pedronette, and João Paulo Papa. Weakly supervised learning through
rank-based contextual measures. Neurocomputing, 2024.
Status: Published [265].

6. Gustavo Leticio, Lucas Pascotti Valem, Leonardo Tadeu Lopes, and Daniel Carlos
Guimarães Pedronette. PyUdlf: A python framework for unsupervised distance learning
tasks. In Proceedings of the 31st ACM International Conference on Multimedia, MM ’23,
page 9680–9684, New York, NY, USA, 2023. Association for Computing Machinery.
Status: Published [166].

7. V. Pereira-Ferrero, L. P. Valem, G. Leticio, and D. Pedronette. Feature fusion and
augmentation based on manifold ranking for image classification. In 2023 IEEE Sixth
International Conference on Artificial Intelligence and Knowledge Engineering (AIKE),
pages 75–82, Los Alamitos, CA, USA, sep 2023. IEEE Computer Society. Status:
Published [257].

8. Vanessa Helena Pereira-Ferrero, Lucas Pascotti Valem, and Daniel Carlos Guimarães
Pedronette. Feature augmentation based on manifold ranking and LSTM for image
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classification. Expert Systems with Applications, 213:118995, 2023.
Status: Published [259].

9. Lucas Barbosa de Almeida, Lucas Pascotti Valem, and Daniel Carlos Guimarães
Pedronette. Graph convolutional networks and manifold ranking for multimodal video
retrieval. In 2022 IEEE International Conference on Image Processing (ICIP), pages
2811–2815, 2022.
Status: Published [63].

10. João Gabriel Camacho Presotto, Samuel Felipe dos Santos, Lucas Pascotti Valem,
Fabio Augusto Faria, João Paulo Papa, Jurandy Almeida, and Daniel Carlos Guimarães
Pedronette. Weakly supervised learning based on hypergraph manifold ranking. Journal
of Visual Communication and Image Representation, 89:103666, 2022.
Status: Published [263].

11. Filipe Alves de Fernando, Daniel Carlos Guimarães Pedronette, Gustavo José de Sousa,
Lucas Pascotti Valem, and Ivan Rizzo Guilherme. Rade+: A semantic rank-based graph
embedding algorithm. International Journal of Information Management Data Insights,
2(1):100078, 2022.
Status: Published [65].

12. Claudio Filipi Gonçalves dos Santos, Diego de Souza Oliveira, Leandro A. Passos, Rafael
Gonçalves Pires, Daniel Felipe Silva Santos, Lucas Pascotti Valem, Thierry P. Moreira,
Marcos Cleison S. Santana, Mateus Roder, João Paulo Papa, and Danilo Colombo. Gait
recognition based on deep learning: A survey. ACM Comput. Surv., 55(2), jan 2022.
Status: Published [76].

13. Daniel Carlos Guimarães Pedronette, Lucas Pascotti Valem, and Longin Jan Latecki.
Efficient rank-based diffusion process with assured convergence. Journal of Imaging, 7(3),
2021.
Status: Published [252].

14. Daniel Carlos Guimarães Pedronette, Lucas Pascotti Valem, and Ricardo da S. Torres.
A bfs-tree of ranking references for unsupervised manifold learning. Pattern Recognition,
111:107666, 2021.
Status: Published [253].

15. Nikolas Gomes de Sá, Lucas Pascotti Valem, and Daniel Carlos Guimarães Pedronette.
A multi-level rank correlation measure for image retrieval. In Proceedings of the 16th
International Joint Conference on Computer Vision, Imaging and Computer Graphics
Theory and Applications (VISIGRAPP 2021) - Volume 5: VISAPP, pages 370–378.
INSTICC, SciTePress, 2021.
Status: Published [68].

16. Lucas Barbosa de Almeida, Vanessa Helena Pereira-Ferrero, Lucas Pascotti Valem,
Jurandy Almeida, and Daniel Carlos Guimarães Pedronette. Representation learning
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for image retrieval through 3D CNN and manifold ranking. In 2021 34th SIBGRAPI
Conference on Graphics, Patterns and Images (SIBGRAPI), pages 417–424, 2021.
Status: Published [62].

17. João Gabriel Camacho Presotto, Lucas Pascotti Valem, Nikolas Gomes de Sá, Daniel
Carlos Guimarães Pedronette, and João Paulo Papa. Weakly supervised learning through
rank-based contextual measures. In 2020 25th International Conference on Pattern
Recognition (ICPR), pages 5752–5759, 2021.
Status: Published [264].

18. Filipe Alves de Fernando, Daniel Carlos Guimarães Pedronette, Gustavo José de Sousa,
Lucas Pascotti Valem, and Ivan Rizzo Guilherme. Rade: A rank-based graph embedding
approach. In Proceedings of the 15th International Joint Conference on Computer Vision,
Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2020) - Volume
5: VISAPP, pages 142–152. INSTICC, SciTePress, 2020.
Status: Published [64].

19. Leonardo Tadeu Lopes, Lucas Pascotti Valem, Daniel Carlos Guimarães Pedronette, Ivan
Rizzo Guilherme, João Paulo Papa, Marcos Cleison Silva Santana, and Danilo Colombo.
Manifold learning-based clustering approach applied to anomaly detection in surveillance
videos. In Proceedings of the 15th International Joint Conference on Computer Vision,
Imaging and Computer Graphics Theory and Applications - Volume 5: VISAPP, pages
404–412. INSTICC, SciTePress, 2020.
Status: Published [204].

20. Flávia Pisani, Lucas Pascotti Valem, Daniel Carlos Guimarães Pedronette, Ricardo
da S. Torres, Edson Borin, and Mauricio Breternitz Jr. A unified model for accelerating
unsupervised iterative re-ranking algorithms. Concurrency and Computation: Practice and
Experience, 32(14):e5702, 2020.
Status: Published [261].

Figure 11.3 presents a diagram with all the works that originated from collaborations
and their respective publications. It also shows how they connect to the concepts and are
directly or indirectly related to contextual similarity learning or person Re-ID.

• International Fellowship

During the course of the Ph.D. program, the student received a “Fulbright Doctoral
Dissertation Research Abroad Award”, conducted under the supervision of:

• Professor Longin Jan Latecki from Temple University (Philadelphia, Pennsylvania,
United States of America), which contributed to the research projects involving the
RFE [334] and Manifold-GCN [333] approaches.

The fellowship covered a 9-month stay in Philadelphia from September 2023 to May 2024
to conduct the research at Temple University.
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11.4 Code Availability
As of the writing of this text, the RFE [334] and JaccardMax [324] implementations

are available in the open-source Unsupervised Distance Learning Framework [326]
(UDLF) 16. The UDLF is a C/C++ framework of unsupervised distance learning
methods for image and multimedia retrieval tasks, it currently implements eleven different
approaches and is continuously maintained. As a result of a collaboration, a Python wrapper
was proposed for UDLF, the pyUDLF [166], which is also accessible from Github 17.

It is intended that the code for the other proposed approaches will be made
available to facilitate further research and development. This will also enable the scientific
community to replicate the results.

11.5 Future Work
Given the diversity of challenges and contributions discussed in this work, various

future research directions are possible:

1. Evaluate for multi-query Re-ID: All the results were presented for single-query
Re-ID, where the query consists of only a single image for each search. For future
work, the proposed methods can be adapted for scenarios where multiple queries are
provided as input.

2. Investigate the impact of Re-ID detectors: Experiments can be conducted to
evaluate and investigate the impact of multiple Re-ID detectors on the effectiveness
of the proposed methods. This can also help to explain the differences in results on
Market and Duke datasets, for example.

3. Other types of multimedia content: In this work, all the evaluations were
performed using image data. However, most of the proposed methods are flexible
and work using features and ranked lists. Therefore, the features could be extracted
from other types of multimedia content (e.g., sound, video, text, and others) and
the proposed methods could also be evaluated in these scenarios.

4. Improve synthetic data generation: Both DRNE and RQPPF are trained on
synthetic data. Investigations of approaches that could improve the generation of
this data could be conducted.

5. Employ other denoising networks for DRNE: The proposed DRNE revealed
that ranked lists can be represented as images and a denoising network can be

16 github.com/UDLF/UDLF
17 github.com/UDLF/pyUDLF

github.com/UDLF/UDLF
github.com/UDLF/pyUDLF
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utilized to perform query performance prediction. This method was validated using
the DnCNN, and investigations with other denoising networks could be conducted.

6. Other measures to compute RQPPF meta-features: Aiming at encoding
information from the reciprocal neighborhood to build the meta-features, the
proposed RQPPF mainly utilized Authority and Reciprocal Density effectiveness
estimation scores. Other measures could be employed, including the HQPP used by
the proposed HRSF approach. Even the DRNE could be combined with RQPPF.

7. Expand HRSF selection with other QPP approaches: For selecting the best
ranked lists from different descriptors, HRSF uses HQPP. For future work, other
measures can be considered, including the ones proposed, the DRNE and RQPPF.

8. Adapt and use Jaccard Max for selection in HRSF: It is highly desirable
to combine ranked lists that show high complementarity. For this purpose, HRSF
employs a correlation measure for selection. The Jaccard Max could be adapted to
compare ranked lists of the same image and be used as part of the HRSF workflow.

9. Research strategies to export embeddings from GCNs: This work exports
embeddings from the GCNs by considering the output of the last layer before the
softmax operation. However, the experimental results revealed that the embeddings
using this strategy are not adequate. This was verified when comparing the
semi-supervised Re-ID results of Manifold-GCN with the other unsupervised
approaches. An investigation can be conducted to research other strategies to obtain
embeddings from GCNs.

10. Combine RFE and Manifold-GCN: The Manifold-GCN utilizes manifold learning
techniques to construct the input graphs for the GCNs. However, the input features
are those generated by the descriptors. One potential approach is to, instead of using
these features, use the embeddings generated by the RFE as the input for the GCNs
in Manifold-GCN.

11. Utilize RFE embeddings for other tasks: This work evaluated the RFE
embeddings for image classification. However, these embeddings could be used
in many other tasks (e.g., clustering, retrieval).

12. Generate pseudo-labels with RFE: Besides the embeddings, the RFE also
outputs the connected components (CC) found by the algorithm. Images that belong
to the same CC usually belong to the same class. An investigation could be conducted
to use these CCs to generate pseudo-labels.

13. Adapt CCL for semi-supervised scenarios: As the training progresses, unlabeled
data that are classified with a higher probability of belonging to a certain class can
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be incorporated into the training process. This idea could be used to turn CCL
applicable to semi-supervised scenarios.

14. Integrate the neighborhood information in other contrastive losses: The
CCL incorporates neighborhood information into a supervised contrastive loss.
However, an investigation could be conducted to adapt and incorporate this idea in
other types of contrastive losses.

15. Utilize CCL embeddings for retrieval: The embeddings produced by Contrastive
Cluster Learning (CCL) could be applied to a wider range of tasks beyond image
classification, including image retrieval. This would expand the potential applications
of CCL to tasks such as Re-ID. To enhance its effectiveness in these areas, further
research is needed to analyze and improve the separability margins of classes within
the latent space.

Table 11.9 lists the possible future work alongside proposed approaches, using
bullet points to indicate when they are related.

Table 11.9 – Future work related to each of the proposed approaches.

Proposed Methods

Future Work D
R

N
E

R
Q

PP
F

Ja
cc

ar
dM

ax

H
R

SF

R
FE

M
an

ifo
ld

-G
C

N

C
C

L

1. Multi-query Re-ID • • • • • •
2. Impact of Re-ID detectors • • • •
3. Other types of multimedia content • • • • • • •
4. Improve synthetic data • •
5. Other denoising networks •
6. Improve meta-features •
7. HRSF with other QPP approaches • • •
8. JaccardMax with HRSF • •
9. Strategies to export embeddings from GCNs •
10. Combine RFE and Manifold-GCN • •
11. RFE embeddings for other tasks •
12. Generate pseudo-labels with RFE •
13. CCL for semi-supervision •
14. Neighborhood into other contrastive losses •
15. CCL embeddings for retrieval •
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