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Abstract—Accurately ranking images and multimedia objects
is of paramount relevance in many retrieval and learning tasks.
Manifold learning methods have been investigated for ranking
mainly due to its capacity of taking into account the intrinsic
global manifold structure. In this paper, a novel manifold ranking
algorithm is proposed based on hypergraphs for unsupervised
multimedia retrieval tasks. Different from traditional graph-
based approaches, which represents only pairwise relationships,
hypergraphs are capable of modeling similarity relationships
among set of objects. The proposed approach uses the hyperedges
for constructing a contextual representation of data samples, and
exploits the encoded information for deriving a more effective
similarity function. An extensive experimental evaluation was
conducted on nine public datasets, including diverse retrieval
scenarios and multimedia content. Experimental results demon-
strate that high effectiveness gains can be obtained in comparison
with state-of-the-art methods.

Index Terms—multimedia; retrieval; ranking; unsupervised;
manifold; hypergraph

I. INTRODUCTION

MAINLY due to the universal popularity of mobile
devices embedded with cameras, several users’ habits

have changed profoundly. Due to the advances in multi-
media acquisition, storage, and sharing, billions of people
were projected to the Web sharing and browsing multimedia
content. In this scenario, Multimedia Information Retrieval
(MIR) systems, which make use of the representation of visual
content to search and retrieve relevant multimedia data, have
attracted increasing attention from industry and academy [1],
where various relevant benchmarks have been established [2].

In many computer vision and machine learning applica-
tions, content-based representations of multimedia data are
commonly modeled as high-dimensional points in a feature
space. Therefore, similarity measurement is an essential com-
ponent in search and learning algorithms, once effective results
depend critically on a good metric over their input space [3]–
[5]. In addition, a similarity (or distance) measure is commonly
used as basis for performing ranking tasks in retrieval systems.

Due to the relevance of this topic, many different ap-
proaches [4], [6]–[12] have been employed for metric learning,
exploiting supervised, semi-supervised, and even unsupervised
learning paradigms. In this paper, we focus on unsupervised
approaches, whose objective consists in learning more effec-
tive measures or re-ranking the initial retrieval results without
any labeled data or user intervention. Unlike traditional pair-
wise measures (e.g., those based on the Euclidean distance),

such approaches compute more global similarity/distance mea-
sures capable of taking into account the information about
relationships among data samples encoded in the dataset.

A myriad of unsupervised methods has been proposed,
ranging from traditional image retrieval to more sophisticated
person re-identification systems [6]–[9], [13]. One important
class of methods relies on diffusion processes [5], [14]–[17],
which have been established as a traditional research venue to
compute more global contextual measures. Such methods use
a pairwise affinity matrix as input, interpreted as a graph that
encodes similarity information from the dataset. The pairwise
affinities are re-evaluated in the context of all other elements,
by diffusing similarity values through the graph [16]. Recently,
re-ranking and rank-based methods [9], [18]–[20] have also at-
tracted a lot of attention. In general, the reasoning behind such
methods consists in analyzing information encoded in ranked
lists in order to compute more effective ranking functions.

Manifold learning methods have also been investigated for
retrieval and ranking tasks [21], [22]. The objective of such
methods is to rank collection objects by taking into account
the intrinsic global manifold structure, collectively revealed
by the dataset being considered. The high-dimensional points,
which represent multimedia content, are often located in a set
of low-dimensional manifolds, which in turn can be used for
computing similarity scores. Based on similarity information
provided by pairwise measures or ranking information, such
methods learn more global affinity measures capable of consid-
ering the intrinsic structure of the dataset manifold. Manifold
learning methods have been established as relevant research
topic for years, especially more recently [10]–[12], [21]–[24].

In this paper, we propose a novel unsupervised manifold
learning algorithm for multimedia retrieval and ranking tasks,
called Log-based Hypergraph of Ranking References (LHRR).
The proposed hypergraph representation and the respective
hyperedges are based on Ranking References, to which are
assigned weights according to a log-based function. The
hypergraphs are a powerful generalization of graphs, which
allow to define hyperedges capable of connecting any number
of vertices and representing similarity relationships among
sets of objects, instead of only pairs, as in traditional graph-
based approaches. Identifying a set of similar objects is of
crucial relevance for capturing the dataset manifold structure
and effective ranking.

Hypergraphs have been widely exploited in multimedia
retrieval approaches with positive results, including unsuper-
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vised and especially semi-supervised scenarios. Some repre-
sentative works include, for example [25]–[28]. However, in
unsupervised image retrieval scenarios where re-ranking meth-
ods take into account the intrinsic structure of the dataset man-
ifold for learning more effective measures, only few and recent
methods have been proposed based on hypergraphs [15].

Another research problem addressed in this paper consists
in the development of fusion approaches [29]. Diverse feature
representations often contribute to a better similarity measure.
Multimedia data are usually described by multiple features
associated with multiple views, which often provide comple-
mentary information about their content [4]. Both rank [7],
[20] and diffusion [4] based approaches have been exploited
for fusion tasks, indicating the relevance of combining differ-
ent views to reach more effective results. In this paper, we also
validate the proposed method in this context, showing how it
can be used not only for re-ranking a single feature, but also
for combining different ranking inputs.

In summary, the main contributions of this paper are:

• Despite the intense use of hypergraphs on vision, learning
and manifold ranking tasks [30]–[33], including unsu-
pervised [34]–[36] and semi-supervised scenarios [25],
[26], [28], few works [15] have recently exploited them
for unsupervised re-ranking on image retrieval. The main
novelty of the proposed LHRR approach is a rank-based
model proposed for the hypergraph construction. The
definition of hyperedges, including input/output data, are
completely based on unsupervised ranking information,
weighted by a log function.

• The rank-based model makes the method independent
of distance measures and enables efficient algorithmic
solutions, as discussed in this paper;

• The dataset manifold structure is captured through a
hypergraph-based similarity measure. The proposed ap-
proach exploits the hypergraph structure through comple-
mentary aspects, improving the produced ranking results.

A broadly and extensive experimental evaluation was con-
ducted considering several different retrieval scenarios. The
evaluation was conducted on nine public datasets, including
seven image datasets and two video datasets. Several different
image and video features were considered, including global
(shape, color, and texture), local, deep-learning- and motion-
based descriptors. The proposed method achieved very signifi-
cant effectiveness gains, reaching up to +109% of relative gain
on certain datasets. Comparisons with other recent methods
on different datasets were also conducted and the proposed
LHRR algorithm yielded very high effectiveness performance
in comparison with various state-of-the-art approaches.

The remainder of this paper is organized as follows. Sec-
tion II discusses related work and Section III formally de-
scribes the ranking problem addressed. Section IV presents
the proposed Log-based Hypergraph of Ranking References
(LHRR) method and Section V discusses an efficient algorith-
mic solution for computing the method. Section VI describes
the conducted experimental evaluation and, finally, Section VII
concludes this paper and provides possible future research
directions.

II. RELATED WORK

Hypergraphs are a generalization of graphs and, although
not so broadly used as simple graphs, have been attracted
attention in the last decades [37]. While graphs often model
pairwise relationships, in many real-world problems, relation-
ships among objects are more complex than pairwise. In this
scenario, hypergraphs allow capturing high-order relations in
various domains [38], [39]. Due to the significant develop-
ments of combinatorics in conjunction with computer science,
hypergraphs are nowadays increasingly relevant in science and
engineering applications [37].

In learning applications hypergraphs were first used on
clustering algorithms. In [40], a hypergraph is approximated
through a weighted graph. Then, a spectral partitioning algo-
rithm is used to partition the vertices of this graph. In [38],
spectral clustering was generalized to operate on hypergraphs,
also supporting other tasks as hypergraph embedding and
transductive classification.

In last decade, the use of hypergraph on computer vision
and machine learning areas has spread to significant number of
applications. A hypergraph spectral learning formulation was
proposed for multi-label classification in [39]. A probabilistic
hypergrah ranking was proposed in [27], [28], considering
a semi-supervised learning scenario. In fact, the applicabil-
ity of hypergraph on semi-supervised learning scenarios is
remarkable [25]–[28], [30], [41]. Semi-supervised learning
algorithms based on hypergraphs have been used for text
summarization [41], image classificaton [26], and visual search
re-ranking [25]. More recently, Lit et al. [30] used a hyper-
graph Laplacian matrix for deriving an algorithm for clustering
and semi-supervised classification. Mainly due to its versatil-
ity and capacity of modeling high-order relationships, vari-
ous other hypergraph applications have been established last
years, as: person re-identification [42], multimodal retrieval
and re-ranking [31], [43], gait recognition [44] and feature
selection [32], [45]. Studies regarding specific properties of
hypergraphs have been also recently conducted [46].

In another promising research direction, manifold and met-
ric learning approaches also have been attracting a lot of at-
tention, specially recently [4], [10]–[13], [23], [24], [47]–[49].
The capacity of exploiting the intrinsic global manifold struc-
ture of datasets represent a significant advantage in diverse
ranking and learning tasks. In [11], an algorithm is proposed
to capture the image manifold in the feature space through a
regional diffusion mechanism. In [21], the similarity measured
on a manifold is estimated by a random walk process. A
spectral ranking is proposed in [22], which uses a an explicit
embedding for reducing the manifold search to a two-stage
similarity search. Recently, a manifold learning algorithm was
also used to incorporate the global topological structure of
dataset into learning hashing function procedure [12].

In general, metrics are the basis of many learning algo-
rithms, and their effectiveness often presents significant impact
on results [49]. In [47], a multi-manifold metric learning
is proposed for deep representations. In [4], metric fusion
is conducted over multiview data through a graph random
walk algorithm. It can be observed that graphs are tools
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commonly used for modeling various manifold and metric
learning algorithms [4], [10], [24], [50].

Hypergraph models have also been exploited in unsuper-
vised retrieval scenarios. The initiative of Zhu et al. [34],
for example, proposed to use an unsupervised hypergraph
representation to support effective and efficient mobile image
retrieval. The novelty of their work was on the encoding of
both image content and associated texts into a representation,
which can later be used to generate discriminating binary
codes. The goal is to improve image search tasks by taking
advantage of high-order semantic correlations of images. The
work of Gao et al. [35], in turn, addressed the problem of
3-D object retrieval and recognition. In their work, multiple
hypergraphs were used to represent 3-D objects based on their
2-D views, where each vertex is an object and an edge encodes
a cluster of views. Their goal is to avoid the direct computation
of a distance among objects. In the work of Huang [36],
hypergraph models are exploited in two scenarios: (i) video
object segmentations and (ii) content based image retrieval.
The first application uses an unsupervised hypergraph cut
algorithm for clustering, which involves eigen-decomposition
of the hypergraph Laplacian matrix. The second discusses a
semi-supervised learning algorithm based on a probabilistic
hypergraph, which involves the solving of a linear system. The
main focus is on image retrieval based on relevance feedback.

Despite the above related works addressed the use of hy-
pergraphs in image retrieval tasks in an unsupervised fashion,
none of them focused on the re-ranking problem, the goal of
our paper. In a recent work [15], the most related to ours,
a regularized diffusion process is discussed in unsupervised
object retrieval scenarios, deriving a generic tool for tensor-
order affinity learning among objects. Hypergraphs are used
for 3D models grouped into multiple clusters, where each
cluster is deemed as one hyperedge. In contrast, our proposed
hypergraph model is derived completely based on ranking
references and does not require any clustering step. In spite
of that, the proposed method is capable of capturing the
intrinsic structure of datasets and exploiting the powerful of
hypergraphs on representing high-order similarity relationships
for ranking tasks.

III. PROBLEM FORMULATION

This section discusses the problem formulation and the
notation used through the paper.

A. Feature Extraction and Similarity Computing

The object content is firstly encoded through a feature
extraction procedure, which allows quantifying the similarity
between multimedia objects (images, videos). Let D be a
descriptor, which can be defined as a tuple (ε, δ), where:
• ε: oi → Rd is a function, which extracts a feature vector
vî from a multimedia object oi;

• δ: Rd×Rd → R+ is a function that computes the distance
between two multimedia objects according to the distance
between their corresponding feature vectors.

The distance between two objects oi, oj is computed as
δ(ε(oi), ε(oj)). The Euclidean distance is commonly used to

compute δ, although the proposed ranking method is indepen-
dent of distance measures. A similarity measure ρ(oi, oj) can
be computed based on distance function δ and used for ranking
tasks. The notation ρ(i, j) is used along the paper.

B. Multimedia Retrieval and Rank Model

Let C={o1, o2, . . . , on} be a multimedia collection, where
n = |C| denotes the size of the collection C. The target task
refers to retrieving multimedia objects (images, videos) from
|C| based on their content. Let oq denote a query object. A
ranked list τq can be computed in response to oq based on
the similarity function ρ. The ranked list τq=(o1, o2, . . . ,
on) can be defined as a permutation of the collection C. A
permutation τq is a bijection from the set C onto the set
[N ] = {1, 2, . . . , n}. For a permutation τq , we interpret τq(i)
as the position (or rank) of the object oi in the ranked list
τq . If oi is ranked before oj in the ranked list of oq , i.e.,
τq(i) < τq(j), then ρ(q, i) ≥ ρ(q, j).

The top positions of ranked lists are expected to contain the
most similar objects to the query object. Additionally, τq can
be expensive to compute, specially when n is high. Therefore,
the computed ranked lists can consider only a sub-set of the
collection. Let τq be a ranked list that contains only the L
most similar objects to oq , where L� n. Formally, let CL be
a sub-set of the collection C, such that CL ⊂ C and |CL| = L.
The ranked list τq can be defined as a bijection from the set
CL onto the set [N ] = {1, 2, . . . , L}. Every object oi ∈ C can
be taken as a query oq . A set of ranked lists T = {τ1, τ2, . . . ,
τn} can also be obtained, with a ranked list for each object in
the collection C.

Based on the rank model, the neighborhood set can also
be defined. Let oq be a multimedia object taken as query,
a neighborhood set N (q, k) that contains the k most similar
multimedia objects to oq can be defined as follows:
N (q, k) = {S ⊆ C, |S| = k ∧ ∀oi ∈ S, oj ∈ C − S :

τq(i) < τq(j)}.
(1)

C. Manifold Ranking Formulation

The main objective of the proposed LHRR method is to
exploit the similarity information encoded in the set of ranked
lists T , capturing the structure of the dataset manifold. Based
on such analysis, a new and more effective set of ranked Tr is
computed in an unsupervised way with the aim of improving
the effectiveness of retrieval tasks. More formally, we can
describe the method as function fr, such that Tr = fr(T ).

Additionally, the fusion problem is also considered, in
which different sets of ranked lists {T1, T2, . . . , Td} are taken
as input aiming at computing a more effective set Tr.

IV. HYPERGRAPH MANIFOLD RANKING

The proposed method aims at performing context-aware
ranking tasks by capturing the dataset manifold struture and
identifying global similarity relationships. The algorithm ex-
ploits the hypergraph ability of representing high-order rela-
tionships in order to model expanded similarity connections.
Actually, representing only pairwise relations through simple
graphs it is not complete for many multimedia retrieval tasks,
where modelling relationships among set of objects can be
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A. Rank Normalization

B. HypergraphConstruction

C. HyperedgesSimilarities

D. Cartesian Product of Hyperedges

E. Hypergraph-basedSimilarity

Manifold Ranking by Log-based Hypergraph of Ranking References
Fig. 1: The main steps of the proposed Log-based Hypergraph of Ranking References: the ranked lists are normalized for
improved symmetry (A) and used for the hypergraph model constructed (B). Information from both the similarity between
hyperedges (C) and the Cartesian product of hyperedges (D) are combined to defined a more effective similarity measure (E).

of paramount importance [27]. Through hypergraphs, vertices
with similar characteristics can all be enclosed by a hyperedge,
and thus high-order information can be properly captured [30].

Different from most of hypergraph approaches, the as-
signment of vertices to hyperedges is not binary. Although
weighted hypergrahs have already been exploited [12], [27],
a novel approach is proposed in this paper to estimate if a
vertex belongs to a hyperedge, based only on the input rank
information. In this way, the method is completely independent
of feature extraction procedures, mid-level representations, and
distance measures.

The proposed Log-based Hypergraph of Ranking References
(LHRR) is composed of five main steps, whose objective is
to encode the similarity of objects from different perspectives.
Figure 1 illustrates the overall organization of the proposed
method in terms of its main components, and existing depen-
dencies. Each of the main steps of the algorithm is briefly
described in the following and formally defined in the next
sub-sections.

A. Rank Normalization: a normalization procedure is per-
formed to improve the symmetry of ranking references;

B. Hypergraph Construction: the hypergraph models the
global similarity structure of the dataset using the rank
information as input;

C. Hyperedge Similarities: the relationships encoded in
the hyperedges are used to computed a novel similarity
between multimedia objects;

D. Cartesian Product of Hyperedge Elements: a Cartesian
product operation is computed for maximizing similarity
information from hyperedges;

E. Hypergraph-Based Similarity: the similarities between
hyperedges and the Cartesian product operations are com-
bined to compute a hypergraph-based similarity, which
leads to new rankings.

A. Rank Normalization

Different from most of pairwise distance (or similarity)
measures, the relationships established by ranking references
and k-neighborhood sets are not symmetric. The benefits of
improving the symmetry of the k-neighborhood relationships
are remarkable in image retrieval tasks [10], [51], specially
when ranking information is used to model the similarity
structure of datasets.

A simple reciprocal rank normalization is considered, com-
puting a new similarity measure ρn based on the reciprocal
rank positions:

ρn(i, j) = 2L− (τi(j) + τj(i)) (2)

Based on the computed measure, the multimedia objects at
the top-L positions of the ranked lists are updated by a stable
sorting algorithm.

B. Hypergraph Construction

A hypergraph is a generalization of the traditional graph, in
which the edges are non-empty subsets of the vertex set and
therefore can connect any number of vertices [27], [37]–[39].
Given a hypergraph G = (V,E,w), the set V represents a
finite set of vertices and E denotes the hyperedge set. The
set of hyperedges E can be defined as a family of subsets of
V such that

⋃
e∈E = V . Each vertice vi ∈ V is associated

with an object oi ∈ C. To each hyperedge ei, a positive
weight w(ei) is assigned, which denotes the confidence of
relationships established by the hyperedge ei.

A hyperedge ei is said to be incident with a vertex vj when
vj ∈ ei. In this way, a hypergraph can be represented by an
incidence matrix Hb of size |E| × |V |:

hb(ei, vj) =

{
1, if vj ∈ ei,
0, otherwise. (3)

A hyperedge ei can be defined as a set of vertices ei =
{v1, v2, . . . , vm}. Therefore, the matrix Hb allows only a
binary assignment of a vertex to a hyperedge, while in many
situations, it is desired to consider a degree of uncertain. In
order to overcome this limitation, probabilistic hypergraphs
have been exploited [27], representing also the probability that
a vertex belongs to a hyperedge. Let r : E × V → R+ be a
function with a codomain in the R+, a continuous incidence
matrix H can be defined as:

h(ei, vj) =

{
r(ei, vj), if vj ∈ ei,
0, otherwise. (4)

1) Hyperedge Definition: A hyperedge ei is defined for
each object oi ∈ C based on the k-neighborhood set of oi and
its respective neighbors. Let ox ∈ N (i, k) be a neighbor of oi
and let oj ∈ N (x, k) be a neighbor of ox. The membership
measure r(ei, vj), which indicates the degree to which the
vertex vj belong to a hyperedge ei, is computed as:
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o1 o3
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τ1 o2τ3
τ2 o2

o2 o1

o3 o1

e1wp(v1,v3)
Hyperedge Definition:

o4

o4

o4

Ranking Results: k=3 v1

v3

v2wp(v1,v2)
v1v2

v1v3

wp(v3,v2)

wp(v2,v2)

r(e1,v2) = wp(o1,o3) x wp(o3,o2) + 
Hyperedge vs  Vertice

 wp(o1,o2) x wp(o2,o2) 
r(e1,v2) = (1-log32) x (1-log32) +  (1-log33) x (1-log31) 
r(e1,v2) = (0.63) x (0.63) +  (0) x (1) 
r(e1,v2) = 0.40 

Fig. 2: Illustration of a hyperedge definition (e1) based on Ranking References with a neighborhood size of k=3. The function
wp assigns weights according to positions and is used to define the association between a hyperedge and a vertice (r(e1, v2)).

v1
v2

v4
e1

e2

e3

e4v3 H =


v1 v2 v3 v4

e1 1 0.40 0.63 0
e2 0 1 0.43 0
e3 0 0.52 1 0.18
e4 0 0 0.22 1



HT =


e1 e2 e3 e4

v1 1 0 0 0
v2 0.40 1 0.52 0
v3 0.63 0.43 1 0.22
v4 0 0 0.18 1


Fig. 3: Similarity among images modelled by LHRR: vertices {v1,v2,v3,v4} and hyperedges {e1,e2,e3,e4}. Hyperedges represent
the similarity relationships among sets of images: e1(v1, v2, v3), e2(v2, v3), e3(v2, v3, v4), and e4(v3, v4). On the right, the
respective incidence matrix H and the transposed matrix HT . The hyperedge e1 follows the example illustrated in Figure 2.

r(ei, vj) =
∑

ox∈N (i,k)∧oj∈N (x,k)

wp(i, x)× wp(x, j), (5)

where wp(i, x) is a function that assigns a weight of relevance
to ox according to its position in the ranked list τi. Objects
which are close to each other in the feature space are expected
to be relevant to each other, i.e., are expected to belong to same
“semantic” class. This is the rationale behind the hyperedge
definition.

The size of the hyperedge |ei| can vary according to the
number of elements in common in the top-k positions τi at
its respective k-neighbors. More specific, the size varies from
k (when all elements are the same) to (k2 − k) (when all
the elements are different). A high diversity of elements may
indicate a high degree of uncertainty and this information will
be exploited for defining the weights of hyperedges in the next
sub-section.

The weight assigned to ox according to its position in the
ranked list τi is defined as follows:

wp(i, x) = 1− logk τi(x). (6)

The function wp(i, x) assigns a maximum weight of 1 to
the first position (the query), presenting a quickly decay for
the first rank positions. The objective is to assign high weight

to the top positions, where the effectiveness of ranked lists is
superior. Notice that our method uses only ranking informa-
tion for defining the hypergraph and respective hyperedges,
differing from other probabilistic hypergraph approaches [27].

Figure 2 illustrate how the ranking references were exploited
to define a hyperedge (e1) and how is computed the relation-
ship among the hyperedge and a vertice. The hyperedge e1 is
defined based on the ranked list τ1 and its respective references
to τ2 and τ3. The function wp is represented for defining the
weights for each vertice/object according to its position in the
ranked list. The association between the hyperedge e1 and the
vertice v2 is defined by r(e1, v2), which is computed based
on reference weights given by wp.

Figure 3 illustrates an example of a whole hypergraph with
four vertices and hyperedges. The respective incidence matrix
and its transposed (which will be used in next steps) are also
represented. The hyperedge e1, used as example in Figure 2,
is part of the hypergraph illustrated in Figure 3. The values
in the matrix H are computed as showed on the right part of
Figure 2.

2) Hyperedge Weight: The weight of a hyperedge w(ei)
denotes the confidence of relationships established among
vertices by the hyperedge. As previously mentioned, the lower
the number and diversity of vertices in the hyperedge, the
higher tends to be the quality of hyperedge and the values of
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h(ei, ·).
In order to compute the weight w(ei), we first define the

Hypergraph Neighborhood Set Nh. Given an hyperedge ei, a
set Nh with the vertices with the greatest h(ei, ·) are formally
defined as:

Nh(q, k) = {S ⊆ eq, |S| = k ∧ ∀oi ∈ S, oj ∈ eq − S :

h(q, i) > h(q, j)}.
(7)

A high-effective hyperedge is expected to contain a few
vertices, which therefore are related to high values of h(ei, ·).
In this way, the weight w(ei) is defined as:

w(ei) =
∑

j∈Nh(i,k)

h(i, j). (8)

Once the hyperedge is defined based on the ranked list
τi, the weight w(ei) can also be seen as an unsupervised
effectiveness estimation of the ranked list τi. Therefore, high
values of w(ei) are assigned to high-effective ranked lists.

C. Hyperedge Similarities
While the hypergraph is a powerful model to represent

high-order similarity relationships, in certain circumstances it
is necessary to extract the similarity information in pairwise
form, for example to perform ranking tasks. Other works [40]
have addressed the problem of approximating the hypergraph
with a graph. In this paper, we propose a novel approach
for exploiting the hyperedge similarities in order to compute
a pairwise similarity matrix S. The pairwise similarity is
computed based on two different views which are combined.

The first hypothesis is that similar objects present simi-
lar ranked lists and, therefore, similar hyperedges. Once all
similarity information is encoded by the incidence matrix
H , a similarity measure between two hyperedges ei, ej can
be computed by a sum of of h values multiplied on the
correspondent vertices: h(ei, vx) × h(ej , vx). Such operation
can be modeled for all elements by multiplying the incidence
matrix and its transposed, as follows:

Sh = HHT (9)

The second hypothesis states that similar objects are ex-
pected to be referenced by the same hyperdges. In this way, to
compute a pairwise similarity between two vertices vi, vj , the
h values on correspondent hyperedges should be multiplied:
h(ex, vi) × h(ex, vj). The operation can be computed by
multiplying transposed incidence matrix HT , as follows:

Sv = HTH (10)

Since both similarities between vertices and hyperedges en-
coded relevant and complementary information, they are com-
bined through a multiplication element by element s(i, j) =
sh(i, j) × sv(i, j). Therefore, the pairwise similarity matrix
can be computed by a Hadamard product:

S = Sh ◦ Sv (11)

Notice that all matrices considered in this section are very
sparse. Consequently, an efficient algorithmic solution can be
derived to compute s(i, j), as further discussed in Section V.

D. Cartesian Product of Hyperedge Elements

As previously discussed, each hyperedge connects a set
of vertices. In order to extract pairwise relationships direct
from the set of elements defined by a hyperedges, a Cartesian
product operation is conducted. The objective is to maximize
similarity information, which can be aggregated to the hy-
peredge similarities. Given two hyperedges eq, ei ∈ E, the
Cartesian product between them can be defined as:

eq × ei = {(vx, vy) : vx ∈ eq ∧ vy ∈ ei}. (12)

Let eq2 denote the Cartesian product between the elements
of the same hyperedge eq , such that eq × eq = eq

2. For
each pair of vertices (vi, vj) ∈ eq

2 a pairwise similarity
relationship p : E×V ×V → R+ is established. The function
p is computed based on the weight w(eq), which denotes the
confidence of hyperedge that originates the association. The
membership degrees of vi and vj are defined as:

p(eq, vi, vj) = w(eq)× h(eq, vi)× h(eq, vj). (13)

A similarity measure based on Cartesian product is defined
through a matrix C, which considers relationships contained
in all the hyperedges. The reasoning behind this formulation
relies on taking into account the co-occurrence of vi and vj
in different hyperedges, accumulating its respective p(·, vi, vj)
values. Each position of the matrix C is computed as follows:

c(i, j) =
∑

eq∈E∧(vi,vj)∈eq2

p(vi, vj) (14)

E. Hypergraph-Based Similarity

The pairwise similarity defined based on hyperedges and
Cartesian product operations provide distinct and complemen-
tary information about the dataset manifold. Therefore, both
information is exploited by computing an affinity matrix W
which combines C and S as follows:

W = C ◦ S (15)

Based on the affinity measure defined by W, a ranking
procedure can be performed given rise to a new set of ranked
lists T . Once both the input and output of the method is
defined in terms of ranking information, the process can be
iteratively repeated. Let the superscript (t) denote the current
iteration and let T (0) denote the set of ranked lists defined by
the feature, we can say that T (t+1) can be computed based
on W(t). After a certain number of T iterations a final set of
ranked lists Tr is obtained.

F. Hypergraph Manifold Rank Fusion

Defining a broad and complete representation for multi-
media content is a very difficult task. Visual information,
for example, is composed of many distinct aspects, which
can be hard to encode in single feature. In this scenario,
fusion approaches have been seen as a promising research
direction [4], [20], [29]. Diverse feature representations can be
exploited to overcome this limitation, since as visual content
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described by multiple features can be decomposed into mul-
tiple views, thus often providing distinct and complementary
information [4]. The diversity and complementarity offered by
different features can substantially improve the effectiveness
of retrieval tasks. In this paper, we propose to exploit the
capacity of LHRR algorithm in capturing the dataset manifold
to combine distinct input rankings computed by different
features. We also addressed a remarkable challenge in fusion
tasks, which consists in defining adaptive weights for each
feature [52].

Let {T1, T2, . . . , Tm} denote a set, in which each element
Td is a set of ranked lists computed by a feature d. Since
the most significant effectiveness gains are obtained at the
first iteration, the LHRR algorithm is computed independently
for each feature, considering one iteration (T = 1). In this
way, a set of ranked lists Td(1) is computed for each feature.
Next, a rank-based formulation is used to combine the ranked
lists, exploiting an adaptive weight, which is assigned to each
query/feature according to the weight of the respective hyper-
edge. Let wf denote the fused affinity measure, each element
is computed as follows considering the top-L positions of τq:

wf (q, i) =

m∏
d=1

(1 + wd(eq))

(1 + logL τq,d(i))
, (16)

where wd(eq) is the weight of hyperedge eq according to the
feature d and τq,d(i) denote the position of oi in the ranked
list of oq according to the feature d. The combined affinity
measure wf (·, ·) gives rise to a unique set of ranked lists Tf .
This set is then processed by the LHRR algorithm as a single
feature and modeled by a unified hypergraph.

V. EFFICIENT ALGORITHIMIC SOLUTION

Recently, in addition to effectiveness aspects, efficiency and
scalability properties of unsupervised post-processing methods
have also been attracted a lot of attention [18], [53]. Due
to complex operations required by most of diffusion-based
approaches, the use of some approaches are computationally
prohibited for larger datasets [18]. In this scenario, we discuss
in this section an efficient algorithmic solution for computing
the LHRR method.

In the way it was defined in previous section, the com-
plexity of the proposed method is delimited as O(n3) by the
matrix multiplication operations given by Equations 9 and 10.
However, the matrix H is extremely sparse, with at most
(k2 − k) elements filled at each line. Therefore, a sparse
matrix and an adjacency list can be maintained to compute
each element in O(k2), reducing the overall complexity to
O(n2). Additionally, since the method is completely based on
ranking information, it is not required that the resulting matrix
is fully computed. In fact, a sparse matrix can be computed
considering only the top-L positions of ranked lists, where
L is constant significantly smaller than n, specially for large
datasets. Since it is highly unlikely that relevant objects are
found after top-L positions, a very efficient algorithm can be
designed without significant lost in effectiveness (as discussed
in Section VI-B).

Based on these assumptions, Algorithms 1 and 2 present
efficient O(n) solutions for computing matrices Sh and Sv

equivalent to the Equations 9 and 10, respectively. Notice that
loops defined on lines 2 and 3 of Algorithms 1 are independent
of the collection size. The same can be said about loops of
lines 2, 7, and 8 of Algorithm 2.

The Cartesian product operations, which also constitute a
relevant step of the algorithm is less expansive computationally
and can be efficiently computed in O(n). A set of increments
are computed based on Cartesian product of hyperedges to
compute a sparse matrix C. Algorithm 3 presents such algo-
rithmic solution. Loops of lines 2 and 3 define the Cartesian
product for each hyperedge.

Other associated steps of the algorithm can also be effi-
ciently computed in O(n) based on the conjecture that only
objects at top-L positions of ranked lists should processed.
The rank normalization (Equation 2), the Hadmard product
(Equations 11 and 15) and the re-sorting of ranked lists
computed for the top-L positions have complexity of O(nL).
The re-sorting step uses the insertion sort algorithm, which
tends to present complexity of O(L) for ranked lists almost
sorted. Therefore, assuming L constant, the overall complexity
of the LHRR method is O(n). The implementation of the
proposed the algorithm is public available under the UDLF
framework [54].

Algorithm 1 Hyperedge Similarities Computing.

Require: Set of ranked lists T and set of hyperedges E
Ensure: Sparse similarity matrix Sh

1: for all oi ∈ C do
2: for all oj ∈ N (i, L) do
3: for all vx ∈ ei do
4: if vx ∈ ej then
5: sh(i, j)← sh(i, j) + (h(i, x)× h(j, x))
6: end if
7: end for
8: end for
9: end for

Algorithm 2 Similarity among vertices references.

Require: Set of ranked lists T and set of hyperedges E
Ensure: Sparse similarity matrix Sv

1: for all ei ∈ E do
2: for all vj ∈ ei do
3: r(vj) = r(vj) ∪ ei
4: end for
5: end for
6: for all oi ∈ C do
7: for all oj ∈ N (i, L) do
8: for all ex ∈ r(vi) do
9: if ex ∈ r(vj) then

10: sv(i, j)← sv(i, j) + (h(ex, vi)× h(ex, vj))
11: end if
12: end for
13: end for
14: end for
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Algorithm 3 Similarity based on Cartesian product operations.

Require: Set of ranked lists T and set of hyperedges E
Ensure: Sparse Cartesian product matrix C

1: for all oq ∈ C do
2: for all oi ∈ eq do
3: for all oj ∈ eq do
4: c(i, j)← c(i, j) + (w(eq)× h(eq, vi)× h(eq, vj))
5: end for
6: end for
7: end for

VI. EXPERIMENTAL EVALUATION

The proposed method was evaluated through a rigorous
and extensive experimental evaluation, considering various
and diversified datasets and features through different retrieval
tasks. Section VI-A describes the datasets, features, and the
protocol adopted in the experimental evaluation. Section VI-B
discusses the impact of parameters. Section VI-C presents
the experimental results obtained on shape, color, and texture
retrieval tasks. Experiments involving natural image retrieval
and object retrieval tasks are discussed, respectively, in Sec-
tions VI-D and VI-E. Video retrieval tasks are discussed in
Section VI-F. Different aspects of the method are analyzed
in Section VI-G while Section VI-H presents qualitative and
visual results. Finally, a comparison with other state-of-the-art
methods is presented in Section VI-I.

A. Datasets, Features and Experimental Protocol

The LHRR method was extensively evaluated on seven well-
known public image datasets and two video datasets. A diverse
range of datasets are considered, including varied sizes of
datasets and images/videdos with diversified characteristics,
ranging from 280 images to 87,648 multimedia videos. Several
different features are used, global (shape, color, and texture
properties), local, mid-level representations and convolutional
neural network-based features. Multifaceted conditions were
considered to evaluate the robustness of the proposed LHRR
method in retrieval tasks. Table I describes the main charac-
teristics of the datasets and the features used for each dataset.

All images are considered as query images except for the
Holidays [66] dataset, for which we use 500 queries due to
comparison purposes. The effectiveness measure considered
for most of experiments is the Mean Average Precision (MAP),
but other measures are also considered according to the
specific protocol of some datasets: the N-S score [79] is
used for UKBench [79] dataset and the Recall at 40 (bull’s
eye score) for MPEG-7 [59] dataset. The Precision (P@x) is
also used in some analysis. Most of experiments also report
the relative gains obtained by the LHRR method, which is
defined as follows: let Mb, Ma be the effectiveness measure
respectively before and after the use of the LHRR, the relative
gain is defined as G = Ma−Mb

Mb
.

B. Impact of Parameters
Only two parameters are required by the LHRR method: k,

which denotes the neighborhood size and T , which defines the

number of iterations. The method also considers the value of
L, which denotes the size of ranked list considered, defining
a trade-off between effectiveness and efficiency.

Firstly, an experiment was conducted for a jointly analysis
of the two parameters. The values k and T are varied and the
impact on the MAP measure is evaluated. Figure 4 presents the
obtained results. As we can observe, a smooth surface with a
large red region was obtained for both datasets, indicating the
robustness of the method for different parameter settings. In
fact, the method converges very quickly as further discussed
in Section VI-G. Therefore, the value of T = 2 were used on
all datasets. Fusion tasks used T = 1.

The impact of neighborhood size k is also analyzed in-
dividually on different datasets. Figure 5 present the results,
considering various distinct features. A large increase of
effectiveness can be observed for small k values until reaching
an stabilization. Regarding the neighborhood size, most of
experiments report the effectiveness scores in two scenarios:
using fixed parameters values and using the best k parameter.
The objective is to report the highest gains and, at same
time, to evaluate the method in general situations. The fixed
neighborhood size k is defined as 5 for instance retrieval
datasets (Holidays [66] and UKBench [79]), 70 for video
datasets and 20 for the other image datasets.

The trade-off defined by L is evaluated on two datasets of
very different sizes. The results are presented in Figure 6.
A small value of L in comparison with the size of the
dataset is enough to reach high-effective results. Additionally,
an accentuated increase of effectiveness is observed in the
beginning of the curve.

C. Shape, Color, and Texture Retrieval
The LHRR is firstly evaluated in general image retrieval

tasks considering shape, color, and texture properties. Table II
presents the obtained results. The MAP score is reported for
the original descriptor and for the LHRR method, including
rank fusion tasks. The results considered a fixed k and the
value of k which achieved the highest MAP score. Different
values of L are also reported in order to allow the analysis of
the impact on effectiveness.

The best result for each descriptor is highlighted in bold.
Very expressive gains up to +44.84% can be observed. A
rank fusion of CFD+ASC, for example, achieved 99.37% from
initial scores of 80.71% and 85.28%. We can also notice
that fixed values of k and small values of L also achieved
significant gains for most of descriptors.

D. Natural Image Retrieval
The experimental evaluation considering natural image re-

trieval tasks were conducted on three popular datasets: the Uni-
versity of Kentucky Recognition Benchmark - UKBench [79],
the Holidays [66] dataset, and the Corel5K [77] dataset. Since
both Holidays and Corel5K are small datasets, a full value of
L is used. Several different features are evaluated, including
various deep-learning representations.

Table III presents the effectiveness results for the
Corel5K [77] dataset. Remarkable gains can be observed for
various features. We can highlight that the CNN-Caffe feature,
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TABLE I: Resources considered in the experimental evaluation: image/video datasets and features used for each dataset.
Dataset Size Type General Descriptors Effectiv.

Description Measure
Soccer [55] 280 Scenes/

Color
Composed of images from 7 soccer
teams, containing 40 images per class.

Border/Interior Auto Color Correlograms (ACC) [56], Pixel Classification
(BIC) [57], and Global Color Histogram (GCH) [58]

MAP

MPEG-7 [59] 1,400 Images:
Shape

Composed of 1400 shapes divided in 70
classes. Commonly used for evaluation of
post-processing methods.

Articulation-Invariant Representation (AIR) [60], Aspect Shape Context
(ASC) [61], Beam Angle Statistics (BAS) [62], Contour Features Descriptor
(CFD) [63], Shape Context (IDSC) [64], and Segment Saliences (SS) [65]

MAP,
Recall@40

Holidays [66] 1,491 Scenes Commonly used as image retrieval
benchmark, the dataset is composed of
1,491 personal holiday pictures with 500
queries.

Joint Composite Descriptor (JCD) [67], Scalable Color Descriptor (SCD) [68]
Color and Edge Directivity Descriptor Spatial Pyramid (CEED-Spy) [69], [70],
ACC [56], Convolutional Neural Network by Caffe [71] (CNN-Caffe), and
Convolutional Neural Network by OverFeat [72] (CNN-OverFeat)

MAP

Brodatz [73] 1,776 Images:
Texture

A popular dataset composed of 111 dif-
ferent textures divided into 16 blocks.

Color Co-Occurrence Matrix (CCOM) [74], Local Activity Spectrum (LAS) [75],
and Local Binary Patterns (LBP) [76]

MAP

Corel5K [77] 5,000 Objects/
Scenes

Composed of 50 categories with 100 im-
ages each class, including diverse scene
content such as fireworks, bark, mi-
croscopy images, tiles, trees, etc.

ACC [56], ACC Spatial Pyramid (ACC-Spy) [56], [70], Color and Edge Direc-
tivity Descriptor Spatial Pyramid (CEED-Spy) [69], [70], Convolutional Neural
Network by Caffe [71] framework (CNN-Caffe), FCTH Spatial Pyramid (FCTH-
Spy) [70], [78], Joint Composite Descriptor Spatial Pyramid (JCD-Spy) [67],
[70], and Local Binary Patterns Spatial Pyramid (LBP-Spy) [70], [76]

MAP

UKBench [79] 10,200 Images:
Objects/
Scenes

Composed of 2,550 objects or scenes.
Each object/scene is captured 4 times
from different viewpoints, distances, and
illumination conditions.

ACC [56], BIC [57], Convolutional Neural Network by Caffe [71] framework
(CNN-Caffe) Color and Edge Directivity Descriptor (CEED) [69], Fuzzy Color
and Texture Histogram (FCTH) [78], FCTH Spatial Pyramid (FCTH-Spy) [70],
[78], Joint Composite Descriptor (JCD) [67], Scale-Invariant Feature Transform
(SIFT) [80], and Vocabulary Tree (VOC) [81]

N-S Score

ALOI [82] 72,000 Images:
Objects

Images from 1,000 classes of objects,
with different viewpoint and illumination.

ACC [56], BIC [57], GCH [58], Color Coherence Vectors (CCV) [83], and Local
Color Histograms (LCH) [84]

MAP

MediaEval [85] 14,838 Videos A total of 3,288 hours of video collected
from blip.tv for the Video Genre Tagging
Task at the MedialEval 2012. They are
distributed among 26 genre categories.

Bag-of-Scenes (BoS) [86], and Histogram of Motion Patterns (HMP) [87], and
Pooling over Pooling (PoP) [88]

MAP

FCVID [89] 87,648 Videos A total of 4,232 hours of video collected
from YouTube and annotated manually
according to 233 categories.

Convolutional Neural Network (CNN) [90], Improved Dense Trajecto-
ries (IDT) [91], Mel-Frequency Cepstral Coefficients (MFCC) [92], Scale-
Invariant Feature Transform (SIFT) [80]. Descriptors computed for each trajec-
tory (IDT): Histogram of Oriented Gradients (IDT-HOG), Histogram of Optical
Flow (IDT-HOF), Motion Boundary Histogram (IDT-MBH), and Trajectory
Shape Descriptor (IDT-TRAJ).

MAP

Fig. 4: Impact of variation of k and T on
effectiveness - Corel5K [77] dataset.
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TABLE II: Effectiveness results on diverse image retrieval scenarios.
Dataset Descriptor Original LHRR (L=200) LHRR (Full L) Relative

MAP Fixed k Best k k Fixed k Best k k Gain

Soccer

GCH 32.24% 33.30% 33.55% 25 36.27% 36.36% 24 +12.78%
ACC 37.23% 45.23% 47.40% 31 48.17% 49.36% 31 +32.58%
BIC 39.26% 44.78% 48.02% 35 47.88% 49.83% 34 +26.92%

BIC+ACC - 46.41% 48.94% 35 49.03% 50.35% 34 -

MPEG-7

SS 37.67% 53.15% 53.40% 22 54.41% 54.56% 21 +44.84%
BAS 71.52% 83.26% 83.30% 19 84.33% 84.50% 19 +18.15%
CFD 80.71% 94.22% 94.22% 20 94.63% 94.64% 21 +17.26%
IDSC 81.70% 91.34% 91.34% 20 91.65% 91.69% 21 +12.23%
ASC 85.28% 93.52% 93.60% 18 93.76% 93.81% 18 +10.00%
AIR 89.39% 97.36% 97.77% 28 97.71% 97.71% 20 +9.37%

CFD+ASC - 99.24% 99.37% 18 99.24% 99.37% 18 -
CFD+AIR - 99.92% 99.97% 19 99.92% 99.97% 19 -

CFD+ASC+AIR - 99.96% 100% 17 99.96% 100% 17 -

Brodatz

LBP 48.40% 49.84% 51.68% 10 50.49% 52.57% 10 +8.62%
CCOM 57.57% 66.45% 66.63% 17 67.22% 67.60% 16 +17.42%

LAS 75.15% 80.50% 81.63% 14 80.99% 82.19% 14 +9.37%
CCOM+LAS - 83.97% 84.36% 17 83.97% 84.55% 16 -
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TABLE III: Effectiveness results on Corel5K [77] dataset.
Descriptor Original LHRR (Full L) Relative

MAP Fixed k Best k k Gain
LBP-Spy 16.28% 19.02% 20.60% 52 +26.54%

ACC 27.75% 38.30% 43.49% 69 +56.72%
FCTH-Spy 27.89% 33.30% 35.22% 49 +26.28%
CNN-Caffe 28.07% 45.09% 50.95% 70 +81.51%
JCD-Spy 29.18% 35.48% 38.23% 46 +31.01%
ACC-Spy 29.76% 37.05% 39.87% 51 +33.97%

CEDD-Spy 30.01% 37.88% 41.12% 54 +37.02%
CEDD-Spy+

CNN - 61.41% 69.12% 54 -

ACC+CNN - 62.48% 72.39% 64 -
ACC+CNN+
CEDD-Spy - 65.62% 73.34% 55 -

TABLE IV: Effectiveness results on Holidays [66] dataset.
Descriptor Original LHRR (Full L) Relative

MAP Fixed k Best k k Gain
JCD-Spy 56.58% 59.17% 59.17% 5 +4.58%

FCTH-Spy 55.38% 59.98% 59.98% 5 +8.31%
CEDD-Spy 56.09% 58.73% 59.24% 4 +5.62%
ACC-Spy 62.37% 67.21% 67.21% 5 +7.76%

CNN-Caffe 64.09% 70.81% 70.81% 5 +10.49%
ACC 64.29% 71.61% 71.61% 5 +11.39%

VGGdense,max 78.35% 82.30% 82.30% 5 +5.04%
CNN-Overfeat 82.59% 85.54% 85.54% 5 +3.57%
CNN-OLDFP 88.46% 89.78% 89.78% 5 +1.49%

CNN-OL+VGG - 89.00% 89.00% 5 -
CNN-OL+CNN-Ov+VGG - 90.59% 90.59% 5 -

CNN-OL+CNN-Ov - 90.94% 90.94% 5 -

TABLE V: Effectiveness results on UKBench [79] dataset.

Descriptor Original LHRR (L=200) Relative
Score Fixed k Best k k Gain

SIFT 2.54 3.10 3.11 6 +22.44%
CEDD 2.61 2.81 2.82 6 +8.05%
FCTH 2.73 2.88 2.90 6 +6.23%
JCD 2.79 2.99 3.00 6 +7.53%
BIC 3.04 3.27 3.28 6 +7.89%

HSV3D 3.17 3.40 3.40 5 +7.26%
CNN-Caffe 3.31 3.63 3.63 6 +9.67%

COMO 3.33 3.55 3.55 5 +6.61%
ACC 3.36 3.65 3.65 5 +8.63%
VOC 3.54 3.78 3.78 6 +6.78%

VGGdense,max 3.65 3.86 3.86 5 +5.75%
CNN-OLDFP 3.84 3.94 3.94 5 +2.60%

ACC+VOC+CNN-Caffe - 3.93 3.93 5 -
CNN-OL+VGG - 3.94 3.94 5 -

CNN-OL+VGG+VOC - 3.96 3.96 5 -

which has an original MAP of 28.07% is improved to 50.95%
by the LHRR method. While the best isolated descriptor
achieves a MAP of 30.01%, the best fusion computed by
LHRR achieves 75.34%.

The UKBench [79] and the Holidays [66] dataset are very
challenging due to the small number of images per class.
Table IV presents the results for Holidays [66] dataset con-
sidering MAP score, while Table V presents the effectiveness
results for the UKBench [79] considering the N-S score. The
N-S score is computed between 1 and 4, which corresponds to
the number of relevant images among the first four image re-
turned (or P@4). Despite of the challenging scenario, positive
gains can be observed for both datasets, reaching +22.44% and
very high-effective scores of 90.94% and 3.96. Considering
two iterations, the LHRR achieves 3.97 for the best fusion
combination on UKBench [79] dataset.

E. Object Retrieval
The LHRR method is evaluated in object retrieval tasks

considering the ALOI [82] dataset. Table VI presents the

TABLE VI: Effectiveness results for the ALOI [82] dataset.
Descriptor Original LHRR (L=3000) Relative

MAP Fixed k Best k k Gain
ACC 43.77% 55.06% 55.06% 20 +25.79%
CCV 47.49% 55.32% 55.97% 29 +17.86%
GCH 50.56% 60.94% 61.05% 22 +20.75%
LCH 58.55% 83.80% 83.83% 21 +43.18%
BIC 71.75% 86.19% 87.51% 31 +21.97%

LCH+BIC - 86.48% 88.42% 34 -

TABLE VII: Effectiveness results on MediaEval [85] dataset.
Descriptor Original HyperGraph (L=1000) Relative

MAP Fixed k Best k k Gain
BoShard 1.76% 2.61% 2.69% 97 +52.84%
BoSsoft 2.23% 3.02% 3.15% 104 +41.26%

PoP 2.53% 3.34% 3.37% 55 +33.20%
HMP 3.85% 4.30% 4.41% 103 +14.55%

HMP+PoP - 5.19% 5.21% 82 -

TABLE VIII: Effectiveness results on FCVID [89] dataset.
Descriptor Original LHRR (L=1000) Relative

MAP Fixed k Best k k Gain
MFCC 1.77% 2.37% 2.5% 33 +41.24%
SIFT 2.24% 3.74% 3.74% 70 +66.96%

IDT-TRAJ 2.73% 3.46% 3.46% 68 +26.74%
IDT-HOF 3.65% 5.33% 5.33% 69 +46.03%
IDT-HOG 3.80% 6.35% 6.35% 66 +67.11%
IDT-MBH 4.61% 7.48% 7.48% 70 +62.26%

CNN 8.42% 17.65% 17.65% 70 +109.62%
CNN+IDT-HOG - 6.06% 6.06% 70 -

effectiveness results considering the MAP scores for two dif-
ferent values of L. Very significant effectiveness gains can be
observed for all descriptors. For instance, the LCH descriptor,
which presented an initial score of 58.55%, achieved 83.83%
using the LHRR method.

F. Video Retrieval
The LHRR method was also evaluated in video retrieval

tasks considering two different datasets. Tables VII and VIII
present the effectiveness results, respectively for the Me-
diaEval [85] and FCVID [89] datasets. Again, remarkable
gains are obtained for various features, specially for CNN on
FCVID [89], which was improved by the LHRR methdo from
8.42% to 17.65%.

G. Discussion and Analysis

In addition to effectiveness results, other aspects of the
proposed method are also analyzed. Firstly, we investigated
convergence aspects, measuring the rank correlation between
iterations and the evolution of effectiveness measures. Figure 7
illustrates the results, considering the two features of the
MPEG-7 dataset. The Kendall τ measure is considered as
rank correlation measure (high values indicate similarity) and
the MAP as effectiveness measure. We can observe that the
highest effectiveness gain is obtained at the first iteration
and the rankings converges to a stable state, as indicates the
Kendall τ values.

A complementary view to such analysis is illustrated in
Figure 8. The evolution of average hyperedge weights along
iterations is illustrated in conjunction with a effectiveness
measure (P@20). As expected, the hyperedge weights, which
estimate the effectiveness of ranked lists, grows along itera-
tions similarly to the P@20 measure.



IEEE TRANSACTIONS ON IMAGE PROCESSING, DECEMBER 2019 11

0 2 4 6 8 10
0.8

0.85

0.9

0.95

1

Iteration

V
al

ue
Convergence Analysis along Iterations - MPEG-7 dataset

Kendall Tau (CFD)
Kendall Tau (ASC)

MAP (CFD)
MAP (ASC)

Fig. 7: Convergence analysis by measuring
rank correlation between iterations.

0 2 4 6 8 10
0.75

0.8

0.85

0.9

0.95

1

Iteration

V
al

ue

Hyperedge Weights along Iterations - MPEG-7 dataset

Hyperedge Weights (CFD)
Hyperedge Weights (ASC)

P@20 (CFD)
P@20 (ASC)

Fig. 8: Hyperedge weights evolution accord-
ing to iterations.

0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Hyperedge weight

A
P

Correlation between Hyperedge weight and Effectiveness

Fig. 9: Correlation between hyperedge
weight and effectiveness measure (AP).

0 1000 2000 3000 4000 5000 6000 7000
0

1

2

3

4

5

6

7

Size of Ranked Lists

A
ve

ra
ge

 T
im

e 
(m

s)

Evolution of Average Time

Fig. 10: Scalability analysis: average time per
query on the ALOI [82] dataset.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Similarity from Reference Image img i

S
im

ila
rit

y 
fr

om
 R

ef
er

en
ce

 Im
ag

e 
im

g
j

Similarity Distribution for Similar Images Before LHRR

Non-Similar Images
Similar Images

Fig. 11: Similarity distribution before the
LHRR algorithm execution.

10 -16 10 -15 10 -14 10 -13 10 -12 10 -11 10 -10 10 -09 10 -08 10 -07 10 -06 10 -05 10 -04 10 -03 10 -02 10 -01 1000
10 -16

10 -15

10 -14

10 -13

10 -12

10 -11

10 -10

10 -09

10 -08

10 -07

10 -06

10 -05

10 -04

10 -03

10 -02

10 -01

1000

Similarity from Reference Image img
i

S
im

ila
rit

y 
fr

om
 R

ef
er

en
ce

 Im
ag

e 
im

g
j

Similarity Distribution for Similar Images After LHRR

Non-Similar Images
Similar Images

Fig. 12: Similarity distribution after the
LHRR algorithm execution.

TABLE IX: Individual impact of LHRR steps on the MAP.
Dataset Descriptor Hyperedges Cartesian Full

Similarities Product Allgorithm
Soccer BIC +21.12% +10.56% +21.60%

MPEG-7 AIR +8.32% +7.80% +9.31%
Holidays CNN-ODLFP +1.75% +0.54% +1.49%
Brodatz LAS +7.55% +4.72% +7.66%
Corel5k CNN-DF +56.93% +42.00% +60.63%

UKBench CNN-ODLFP +1.28% +1.22% +1.15%
ALOI BIC +19.01% +20.61% +20.42%
Mean - +16.57% +12.49% +17.47%

The correlation between the hyperedge weights and the
effectiveness measure can also be observed in Figure 9. Each
image is illustrated by a point in the graph, where the x axis
refers to the hyperedge weight and the y axis refers to the
MAP measure. A high correlation can be observed, demon-
strating that the hyperedge weight is an effective unsupervised
estimation of effectiveness.

The impact of each step of the algorithm is also evaluated.
We evaluate the effectiveness of hyperedges similarities and
the Cartesian product in isolation compared with the full algo-
rithm. The most effective feature of each dataset is considered
in the experiment. Table IX presents the results. As we can
observe, the full algorithm achieved the best effectiveness
results in most of situations.

Finally, efficiency aspects are also analyzed. An experiment
was conducted in ALOI [82] dataset, varying the size of ranked
lists and measuring the execution time. Figure 10 shows the
average time per query according to different ranked lists size.
Notice that a linear behavior can be observed, demonstrating

the scalability of the method.

H. Visual Results
In addition to the extensive quantitative evaluation, a visual

analysis is also presented in this section. First, we evaluate
the impact of the proposed LHRR method on the similarity
distribution, considering the Corel5K dataset. A bidimensional
representation of a dataset before and after the execution of
the algorithm is considered. The representation is constructed
based on two images, arbitrarily selected and called as ref-
erence images. Next, all collection images are represented in
the bidimensional space, such that their position is defined
according to their distance to the reference images.

The bidimiensional representation illustrating the similarity
distribution of Corel5K [77] dataset before the algorithm exe-
cution is shown in Figure 11. The representation considers the
score obtained after the rank normalization procedure. Similar
images to the reference images are illustrated in red circles
and remaining images in blue. As we can observe, similar
and non-similar images are mixed in the similarity space,
leading to low-effective retrieval results. Figure 12 illustrates
the similarity distribution after the use of the LHRR method.
The capacity of taking into account the dataset manifold in
order to increase the separability between similar and non-
similar images is remarkable.

The impact of the new similarity distributions on the ef-
fectiveness of ranking tasks is illustrated in Figure 13. The
reference images (imgi and imgj) are illustrated with green
borders at left and taken as queries. The figure illustrates the
ranked lists obtained before and after the use of the LHRR,
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Ranked List of imgi

Ranked List of imgj

Fig. 13: Visual examples from the Corel5K dataset.

Fig. 14: Visual examples from the UKBench [79] dataset.

evincing the impressive gains in effectiveness. Other visual
examples of UKBench [79] dataset are illustrated in Figure 14.

I. Comparison with Other Approaches

The LHRR method is also evaluated in comparison with
various state-of-the-art post-processing methods and retrieval
approaches. Different aspects are considered, with experiments
conducted on three datasets: MPEG-7 [59], Holidays [66] and
UKBench [79], which are popular datasets commonly used as
benchmark for image retrieval and post-processing methods.

Table X presents the results on the MPEG-7 [59] dataset,
considerig the bull’s eye score (Recall@40), which counts
all matching shapes within the top-40 ranked images, as
evaluation measure. Four different features (IDSC, CFD, ASC,
and AIR) and several recent post-processing methods are eval-
uated. Notice that the LHRR achieved high-effective scores for
all features, reaching the best result for three of them.

The comparison of effectiveness results on the Holidays [66]
dataset is presented in Table XI. Various state-of-the-art re-
trieval approaches are included in the comparison and the
LHRR achieves a high-effective result of 90.94%. Once di-
verse features are used by the related approaches, a comparison
considering the same features used by the LHRR method
is included as baseline. The Graph Fusion [20], which is a
relevant unsupervised method is considered. The neighborhood
size is used as k = 5 and fusion tasks was perfomed by the
graph density variation [20].

Table XII presents the comparison on the UKBench [79]
dataset, considering recent state-of-the-art retrieval ap-
proaches. The results of LHRR are reported for various
features, also including the Graph Fusion [20] method as

TABLE X: Comparison with various post-processing methods
on the MPEG-7 [59] dataset (Bull’s eye score - Recall@40).

Shape Descriptors Bull’s eye
score

Contour Feat. Descriptor (CFD) [63]

-

84.43%
Inner Dist. Shape Context (IDSC) [64] 85.40%

Aspect Shape Context (ASC) [61] 88.39%
Articulation-Invariant Rep. (AIR) [60] 93.67%

Post-Processing Methods Descriptors Bull’s eye
score

Contextual Dissimilarity Measure [51]

IDSC [64]

88.30%
Graph Transduction [93] 91.00%

Self-Smoothing Operator [5] 92.77%
Local Constr. Diff. Process [17] 93.32%

Mutual kNN Graph [94] 93.40%
SCA [9] 93.44%

Smooth Neighborhood [95] 93.52%
Reciprocal kNN Graph CCs [10] 93.62%

Proposed LHRR 94.21%
Graph Fusion [20]

CFD [63]

89.76%
Index-Based Re-Ranking [53] 92.85%

RL-Sim [96] 94.27%
Correlation Graph [24] 94.84%

Reciprocal kNN Graph CCs [10] 96.51%
Proposed LHRR 97.02%

Generic Diffusion Process [16]

ASC [61]

93.95%
Index-Based Re-Ranking [53] 94.09%

Correlation Graph [24] 95.50%
Local Constr. Diff. Process [17] 95.96%

Smooth Neighborhood [95] 95.98%
Reciprocal kNN Graph CCs [10] 96.04%

Proposed LHRR 96.36%
Tensor Product Graph [97] 96.47%

Graph Fusion [20]

AIR [60]

98.76%
Index-Based Re-Ranking [53] 99.93%

RL-Sim [96] 99.94%
Tensor Product Graph [97] 99.99%

Generic Diffusion Process [16] 100%
Neighbor Set Similarity [18] 100%

Reciprocal kNN Graph CCs [10] 100%
Proposed LHRR 100%

TABLE XI: Comparison with state-of-the-art on the Holi-
days [66] dataset (MAP score).

MAP scores for state-of-the-art methods.
Tolias Paulin Qin Zheng Sun

et al. [98] et al. [99] et al. [100] et al. [101] et al. [3]
82.20% 82.90% 84.40% 85.20% 85.50%

Zheng Pedronette Iscen Li Liu
et al. [102] et al. [10] et al. [21] et al. [103] et al. [7]

85.80% 86.19% 87.5% 89.20% 90.89 %

MAP scores for the proposed method
Baseline: Proposed:

Descriptor Graph LHRR
Fusion [20]

ACC 66.42% 71.61%
CNN-Caffe 66.79% 70.81%

CNN-Overfeat 83.79% 85.54%
CNN-OLDFP 89.00 % 89.15%

ACC+CNN-Caffe 71.02% 81.84%
ACC+CNN-Overfeat 76.55% 86.35%

ACC+CNN-Caffe+CNN-Overfeat 80.06% 87.62%
CNN-OLDFP+CNN-Overfeat 79.36% 90.94%

baseline. The proposed LHRR method yielded a very high-
effective N-S score of 3.96.
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TABLE XII: Comparison with state-of-the-art on the UK-
Bench [79] dataset (N-S score - P@4).

N-S scores for state-of-the-art methods
Wang Sun Paulin Zhang Zheng

et al. [104] et al. [3] et al. [99] et al. [20] et al. [52]
3.68 3.76 3.76 3.83 3.84

Bai Xie Liu Pedronette Bai
et al. [9] et al. [105] et al. [7] et al. [10] et al. [15]

3.86 3.89 3.92 3.93 3.93

N-S scores for the proposed method
Baseline: Proposed:

Descriptor Graph LHRR
Fusion [20]

ACC 3.48 3.65
CNN-Caffe 3.45 3.63

VOC 3.67 3.78
CNN-OLDFP 3.87 3.94

ACC+CNN-Caffe 3.70 3.86
ACC+VOC 3.78 3.87

VOC+CNN-Caffe 3.78 3.89
ACC+VOC+CNN-Caffe 3.86 3.93

CNN-OLDFP+VGG+VOC 3.90 3.96

VII. CONCLUSIONS

Accurately ranking have been established as a task of
paramount importance for retrieval applications. In this paper,
a novel manifold ranking algorithm was proposed based on
hypergraphs. The LHRR algorithm exploits the capacity of
hypergrahs of modelling high-order similarity relationships to
analyze the dataset manifold A contextual representation is
proposed based on hyperedges and is used to compute more
effective retrieval results.

The method was extensively evaluated considering diverse
multimedia retrieval scenarios. High effective results were
achieved in comparison with state-of-the art. As future work,
we intend to investigate the LHRR method for multimodal
retrieval and other learning tasks, involving supervised and
semi-supervised scenarios.
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