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Abstract—Due to the growing availability of unlabeled data
and the difficulties in obtaining labeled data, the use of semi-
supervised learning approaches becomes even more promising.
The capacity of taking into account the dataset structure is of
crucial relevance for effectively considering the unlabeled data.
In this paper, a novel classifier is proposed through a manifold
learning approach. The graph is constructed based on a new
hybrid similarity measure which encodes both supervised and
unsupervised information. Next, strongly connected components
are computed and used to analyze the dataset manifold. The
classification is performed through a voting scheme based on
primary (labeled) and secondary (unlabeled) voters. An exper-
imental evaluation is conducted, considering various datasets,
diverse situations of training/test dataset sizes and comparison
with baselines. The proposed method achieved positive results in
most of situations.

I. INTRODUCTION

The capacity of automatically inferring a function from
labeled data turned up supervised learning methods into in-
dispensable tools present in a wide range of applications.
The possibility of discovering patterns encoded in training
sets through robust mathematical and computing models sup-
ported the development of many methods present in everyday
applications. However, despite of the huge success of many
supervised learning applications, some limitations still rep-
resent relevant challenges. The most important concerns the
necessity of sufficient amount of training data for achieving
high-accuracy classification rates. The challenge increases as
the number of labeled samples used to train the classifier
reduces in comparison to the number of unlabeled samples [1].

In this scenario, semi-supervised learning approaches have
been established as a promising solution, attracting growing
attention from the machine learning research community.
Semi-supervised learning (SSL) is halfway between supervised
and unsupervised learning, where the main motivation of such
approaches consists in exploiting the information encoded also
on unlabeled data, in addition to the labeled training data.
The capacity of dealing with relatively few labeled training
data, but a large number of unlabeled samples makes the
semi-supervised learning methods of great importance in many
practical applications, specially in the big data era [2].

Many different semi-supervised methods have been pro-
posed based on diverse models developed in branches of
machine learning, from kernel methods to Bayesian tech-
niques [2]. Other techniques, designed for exploiting specific

characteristics from semi-supervised scenarios, as self-training
and co-training have also been developed [3]. Graph-based
methods represents another relevant trend in semi-supervised
methods, being one of the most active research areas [4], [5],
[6], [2]. In general, data samples are represented by the nodes
and the edges are defined according to pairwise similarity
between samples or k-neighborhood relationships. Despite
the common framework provided by the graph modelling,
many different approaches have been employed, as graph-
cuts [4], random walks [7], label propagation [8] and particles
competition and cooperation [6].

Besides semi-supervised learning, other research area from
machine learning which have been attracting growing interest
is unsupervised learning [9], [10], [11], [12]. In scenarios
where the unavailability of training data is extreme, the capac-
ity of understanding and considering the underlying structure
of the data is of crucial importance for learning and retrieval
tasks. Pioneer unsupervised methods [9] are inspired by semi-
supervised approaches, as label propagation [8]. Graph Trans-
duction [9] uses label propagation in retrieval scenarios, with
the case of only one known class, which is the class of the
query object.

Among various approaches, manifold learning meth-
ods [13], [14], [15], [10] have presented remarkable results on
both semi-supervised and unsupervised scenarios. In general,
one of the basic ideas from manifold learning approaches
consists in discovering and understating the underlying dataset
manifold, performing similarity measurements capable of con-
sidering the intrinsic structures of datasets. As a result, tasks
which can be attached to similarity measures, as learning and
retrieval, can be performed achieving more effective results.

In this paper, a novel classifier is proposed through a
manifold learning approach based on a correlation graph. The
method, named as Correlation Graph Classifier (CGC) uses a
manifold learning approach for discovering and representing
information encoded in the dataset structure. The method is
inspired by recent advances on unsupervised manifold learning
techniques [10], which uses the correlation graph to model
the dataset similarity. However, the proposed classifier present
significant novelties in order to represent both labeled and
unlabeled data for semi-supervised learning tasks. A new hy-
brid similarity measure is derived, considering supervised and
unsupervised information. Next, strongly connected compo-
nents are computed and used to analyze the dataset manifold.
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The classification is performed through a voting scheme based
on primary (labeled) and secondary (unlabeled) voters, which
have their weight computed by an effectiveness estimation.
The proposed method is experimentally evaluated on various
datasets, considering diverse situations of training/test dataset
sizes. The method is also evaluated in comparison with base-
lines, achieving positive results in most of situations.

The remainder of this paper is organized as follows. Sec-
tion II formally describe the problem addressed. Section III
presents the proposed method and Section IV describes the
conducted experimental evaluation. Finally, Section V con-
cludes the paper and discusses possible future research di-
rections.

II. FORMAL PROBLEM DEFINITION

Let X = {x1, x2, . . . , xL, xL+1, . . . , xN} be a data col-
lection, where each element xi denotes a data item. The
collection X can be defined as a partially labeled data set,
where XL = {xi}Li=1 is the labeled data items subset and
XU = {xi}Ni=L+1 is the unlabeled data items subset.

Let vxi
be a feature vector defined in Rn, which represents

the data item xi. Let d: Rd ×Rd → R be a distance function
(as the Euclidean distance), which computes the distance
between two data items according to their corresponding
feature vectors. Formally, the distance between two data items
xi and xj is given by d(vxi

, vxj
). For readability purposes,

the notation d(i, j) is used along the paper.
Based on the distance function d, a ranked list τq can be

computed for obtaining the most similar data items to a given
data item xq . The ranked list τq=(x1, x2, . . . , xN ) can be
formally defined as a permutation of the collection X. For a
permutation τq , we interpret τq(i) as the position (or rank) of
the data item xi in the ranked list τq . We can say that, if xi is
ranked before xj in the ranked list of xq , that is, τq(i) < τq(j),
then d(q, i) ≤ d(q, j). A ranked list τi can be computed for
every data item xi ∈ X, in order to obtain a set T = {τ1, τ2,
. . . , τN} of ranked lists.

Let L = {1, . . . , C} be a set which contains the labels of
the dataset. Let y : X→ L be a function which associates each
xi ∈ X to its label y(xi) in the final classification results. The
semi-supervised learning procedure can be formally defined as
the estimation of function y(xi) for each unlabeled data item
xi ∈ XU .

III. PROPOSED METHOD

In this section, we present the classification method mainly
based on graphs and correlation measures for semi-supervised
learning tasks. The method is deterministic, offers a probabil-
ity of each element belong to a certain class and can be used
in different pattern recognition applications. The main steps of
the algorithm are summarized in the Algorithm 1 and detailed
discussed in the next subsections.

A. Semi-Supervised Similarity Measure

Let xi and xj be data samples of a given dataset and let k
denotes the neighborhood size. We proposed a semi-supervised

Algorithm 1 Correlation Graph Classifier

Require: A dataset and set of training data
Ensure: A set of classification arrays

1: Compute the similarity among the top-T elements for each
ranked list.

2: Compute the effectiveness estimations for the elements in
the training set.

3: while thc ≥ thend do
4: Built the graph considering edges with weights ≥ thc.
5: Find the strongly connected components.
6: Voting step
7: thc ← thc − thstep
8: end while
9: Compute the remaining classification arrays.

10: Normalization and count the votes.

similarity measure which is used as basis for the construction
of the Correlation Graph. The motivation consists in exploiting
both the unlabeled information encoded in the dataset manifold
as the labeled available. In this way, the similarity between xi
and xj can be computed according to the Equation 1:

ρ(xi, xj) =
ρu(xi, xj) + ρs(xi, xj)

2
, (1)

where ρu is an unsupervised measure and ρs is computed
based on labeled data.

The unsupervised measure ρu(xi, xj , k) can be computed
by any correlation measure, considering distances or rank
information. The correlation measures are expected to compute
values in the interval [0, 1] (higher values, higher correlation).
Most of our experimental evaluation considered the Jaccard
index as correlation measure. Let Nk(i) be the set of k-nearest
neighbors to the data sample xi, the measure ρu can be defined
by Jaccard 1 as follows:

ρu(xi, xj) =
|Nk(xi) ∩Nk(xj)|
|Nk(xi) ∪Nk(xj)|

, (2)

While ρu defines a contextual similarity measure completely
unsupervised, it is possible to estimate the similarity between
xi and xj based on supervised information if only the class
of xi is known, e.g, if xi ∈ XL and xj ∈ XU . In this
way, the objective of supervised measure ρs(xi, xj , k) is to
count the number of elements of the same class of xi among
the neighborhood of xj . The measure can formally defined
according to the Equation 3:

ρs(xi, xj) =

∑k
l=0 fl(xi, τj(l))

|Nk(xj) ∩ XL|
(3)

where fl(xi, xj) is a function which verify if two elements
have the same label (belong to the same class), as defined by
Equation 4:

1Besides Jaccard index, the RBO rank correlation measure and the Pearson
correlation coefficient were also considered in the experimental evaluation.
The Pearson coefficient considered the correlation among distances to k-
nearest neighbors.



fl(xi, xj) =

{
1, if xi, xj ∈ XL ∧ l(xi) = l(xj);

0, otherwise.
(4)

The function l(xi) denotes the label (or class) of xi.

B. Effectiveness Estimation

The classification is performed in the proposed method
through a voting scheme. In this scenario, we propose a
strategy which aims at estimating the authority (or weight)
of each voter in the classification process. Our conjecture is
that high-accurate voters are positioned in a dense region in
the space, with a high number of elements of the same label.

Therefore, it is expected that the similarity to such elements
are also high. We propose an effectiveness estimation of a
given object xi, which is computed by the Equation 5:

w(xi) =

∑k
l=1 ρ(xi, τi(l))

k
. (5)

Consequently, an element which presents a straight similar-
ity relationship with its neighbors have an elevated effective-
ness estimation and, therefore, an high authority in the voting
procedure.

C. Correlation Graph

The Correlation Graph (CG) is the main foundation of the
proposed method, in which is based the voting procedure
and consequently the classification. The graph is constructed
based on different levels of confidence, considering different
thresholds of similarity for edges creation. High thresholds
produces a sparse graph, but extremely reliable which present
a high weight in the voting scheme.

Formally, the graph can be defined as a directed graph
G = (V,E), where each note corresponds to an element in
the dataset, such that V = X. The set of edges is defined
considering the similarity among the objects in the top-T
positions of the ranked lists and the current threshold, such
that:

E = {(xq, xj) | τq(j) 6 T ∧ ρ(xq, xj) > tc}, (6)

where tc denotes the current threshold at a given moment of
execution of the algorithm.

In order to reduce to drawbacks associated to the sparsity of
the graph and, at same time, exploiting the dataset manifold,
the Strongly Connected Components (SCC) are computed.
The strongly connected components of a directed graph are
defined by subgraphs that are themselves strongly connected,
i.e., where every vertex is reachable from every other vertex.
The SCCs expand the similarity neighborhood respecting the
geometry of the dataset manifold. The Tarjan [16] algorithm
is used to compute the SCCs.

D. Voting Strategy

The Correlation Graph encodes the similarity information
obtained from the datatset manifold, considering both unla-
beled and labeled data. However, its necessary to condense
such information in order to perform classification tasks. A
voting strategy is employed aiming at classifying and offer a
probability of each element belonging to a certain class.

All the elements, including those from both the labeled
and unlabeled sets, are considered voters. However, they are
divided into two categories: primary and secondary voters, as
discussed in the following.

1) Primary Voters: All the labeled elements, e.g., those
which belong to the training set are immediately used as
primary voters. A primary voter xi votes in all the adjacent
nodes until a depth dp(xi), which is defined as follows.

dp(xi) = ddb × w(xi)× tce (7)

where db (depth base) is a parameter. The idea consists and
allow deeper votes in the graph to nodes which presents a high
effectiveness estimation.

Let Vj be a voting vector of a given data sample xj . The
vote from a primary voter xi to a data sample xj in favor of
xi label (l(xi)) is defined according to Equation 8:

Vj [l(xi)] =
w(xi)

(1 + d(xi, xj))
× (tc + 1), (8)

where d(xi, xj) is the depth, or distance in the graph given
by the number of nodes between xi and xj .

2) Secondary Voters: In order to maximize the information
obtained from the unlabeled data, the elements which has the
major probability of belonging to a certain class are allowed
to vote in favor of that class. In this sense, we can say that
the secondary voters are elected by the primary voters. A
node requires to meet two requirements for being elected as a
secondary voter: have at least α% of votes to a certain class
with a minimum of β effectiveness estimation.

Since the original class of the secondary voter is unknown,
the vote is done according to the class that has received the
majority of the votes for that element. A secondary voter votes
only in the adjacent vertices from a given depth (d = 1). The
vote of a secondary voter xi to a given data sample xj is
defined according to Equation 9:

Vj [el(xi)] = w(xi)× (tc + 1), (9)

where el(xi) denotes the expected label of xi, e.g., the class
with the highest probability.

E. SCC Votes

A Strongly Connected Component is defined as a set of
elements. Each element in the SCC votes to all other elements
in the same SCC. Formally, let S be a strongly connected
component, each pair (xi, xj) such that xi, xj ∈ S demand a
vote. The elements are distinguished as primary or secondary



voters, depending if they belong to the labeled or unlabeled
set. The votes are computed according to Equation 10 to the
primary voters:

Vj [l(xi)] = w(xi)× (tc + 1), (10)

The votes from secondary voters are computed in the same
way as defined by Equation 9. This step is performed only
when the current threshold (thc) is lower than thscc.

F. Final Steps

The iteration is interrupted when all of the nodes have
received at least one vote or when the current threshold (thc)
reaches thend. Once the votes depends on the adjacency of
the Correlation Graph, it is possible that the algorithm stops
iterating before all the elements have received at least one vote.
Aiming at solving this problem, a k-NN analysis is executed
to compute an classification array for the remaining elements.

G. Classification

When the voting procedure is finished, a voting vector
is obtained for all elements from the unlabeled set. All the
vectors are normalized, given rise to a probabilistic vector and
the class assigned is that with the highest probability. Formally,
the CGC classification for a given data sample xj is computed
as:

y(xj) = argmax
l∈L

Vj [l], (11)

where y(xj) represents the function which associates the label
to a data sample, as defined in Section II.

IV. EXPERIMENTAL EVALUATION

This section presents the experimental evaluation conducted
in order to assess the effectiveness of the proposed approach.
Section IV-A discusses the experimental protocol considered;
Section IV-B presents an experimental analysis of the algo-
rithm and Section IV-C presents the obtained results.

A. Experimental Protocol

In order to measure the performance of the proposed
method, we have applied it to the well-known Iris dataset 2

and other 5 standard datasets commonly used for evaluation
of semi-supervised methods3. Some information about these
datasets are available at Table I. For detailed description about
each of them, one can refer to [2].

For each dataset, there are 10 or 100 labeled data points,
and for each case 12 random splits are performed in order
to partition the dataset into labeled and unlabeled points. It
is ensured that each split contains at least one point from
each class. For comparison purpose, we have included the
classification results of 13 semi-supervised learning methods
presented in [2]. The Nearest Neighbor (1-NN) and Linear

2Available at https://archive.ics.uci.edu/ml/datasets/iris
3Available at http://www.kyb.tuebingen.mpg.de/ssl-book/benchmarks.html

TABLE I: Benchmark datasets used in the experiments.

Dataset Classes Dimension Points Type

g241c 2 241 1500 artificial
Digit1 2 241 1500 artificial
USPS 2 241 1500 imbalanced
COIL 6 241 1500
BCI 2 117 400

SVM (SVM) [17] are used as the base line algorithms. The
other 11 algorithms are those that presented the best perfor-
mance on their respective category and they are presented in
the top 11 lines of Table II. The detailed configurations of each
method are described in [2]. Besides of these 13 techniques,
we have also included other 3 semi-supervised learning graph-
based methods in the comparison, which can be considered
as the techniques of the same sub-category of the proposed
method. These are presented at the last 3 lines of Table II.

TABLE II: Semi-Supervised Learning Methods used for Per-
formance Comparison

Abbreviation Method References

MVU + 1-NN Maximum Variance Unfolding [18], [19]
LEM + 1-NN Laplacian Eigenmaps [20]
QC + CMN Quadratic Criterion and Class Mass Regularization [5], [21]
Discrete Reg. Discrete Regularization [22]
TSVM Transductive Support Vector Machines [23], [24]
SGT Spectral Graph Transducer [24]
Cluster-Kernel Cluster Kernels [25]
Data-Dep. Reg. Data-Dependent Regularization [26]
LDS Low-Density Separation [23]
Laplacian RLS Laplacian Regularized Least Squares [27]
CHM (normed) Conditional Harmonic Mixing [28]
LGC Local and Global Consistency [29]
LP Label Propagation [30]
LNP Linear Neighborhood Propagation [31]
PCC Particle Competition and Cooperation [32], [33]
CUSSL Comb. Unsup. and Semi-Supervised Learning [33]

The parameters used in most of the conducted experiments
are described in Table III.

TABLE III: Parameters settings.

Parameter Default Value

Vote depth base (db) 5
Iteration Start (thstart) 1
Iteration Step (thstep) 0.01
Iteration End (thend) 0.1
Minimum threshold for SCC increments (thscc) 0.8
Min. vote percentage for secondary voters (α) 95%
Min. effect. estimation for secondary voters (β) 0.05
Correlation Measure Jaccard
Ranked list size (T ) Dataset size (points)

B. Experimental Analysis

This section aims at presenting an experimental analysis
of parameters and characteristics of the proposed method. As
discussed in the Section III-A, the proposed approach can rely
on different correlation measures to compute the classification
results. Table IV presents a comparison of results on the Iris
dataset for three different correlation measures (RBO, Pearson,

https://archive.ics.uci.edu/ml/datasets/iris
http://www.kyb.tuebingen.mpg.de/ssl-book/benchmarks.html


and Jaccard). Different sizes of training sets are considering,
ranging from 2% to 10%. In this case, the Jaccard index
showed the best results and so we decided to use it as the
default correlation measures for the remaining experiments.

TABLE IV: Accuracy for different correlation measures.

2% 4% 6% 8% 10%
RBO 85.97% 87.39% 90.05% 90.81% 91.86%
Pearson 85.33% 88.70% 91.64% 92.68% 93.17%
Jaccard 93.28% 93.17% 93.80% 93.57% 93.89%

Other aspect evaluated consists in the impact of the neigh-
borhood size on the accuracy of the method. Figure 1 presents
the impact of the neighborhood variation in three different
datasets considering 10 labeled data points.
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Fig. 1: Impact of variation of k on effectiveness (10 labeled
training labels).

The proposed Effectiveness Estimation approach, discussed
in Section III-B, is also experimentally analyzed. It is expected
that a good effectiveness estimation to provide higher values
when the real accuracy is also high. Figure 2 compares
the effectiveness estimation with the Average Precision (AP)
measure in the Iris dataset. As can be seen, there is a high
correlation between the values indicating that the estimation
is accurate.

C. Experimental Results

Table V shows the classification accuracy when the pro-
posed method is applied to the Iris dataset. For comparison
purposes, PCC and CUSSL are considered as baselines [33].
The best accuracy results for each configuration are high-
lighted. For each graph configuration, 2% to 10% data items
are randomly chosen to compose the labeled subset, which
data items are presented to the algorithm with their respective
labels. The remaining data items are presented to the algo-
rithm without their labels, so it can classify them. For each
graph configuration and labeled subset size, the experiment is
repeated 1,000 times with different labeled subsets, so each
value in these tables is the average of the 1,000 executions.
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Fig. 2: Evaluation of the proposed Effectiveness Estimation.

These results are plotted on Figure 3. As can be observed, the
CGC achieved the best results in all the cases.

TABLE V: Test accuracy results for Iris Dataset.

2% 4% 6% 8% 10%
PCC 90.44% 89.77% 90.52% 91.23% 91.77%
CUSSL 92.07% 91.42% 91.43% 92.17% 92.89%
CGC 93.28% 93.17% 93.80% 93.57% 93.89%
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Fig. 3: Accuracy results for the Iris dataset.

Tables VI and VII report the average test errors of the
18 methods and the proposed method applied to the datasets
presented in Table I. They show test errors (%) with 10 and
100 labeled training points respectively. The best value of k
was used for each dataset, performing a search in the interval
[0,50] in steps of 5. For 10 labeled points the values of k
considered are 45, 10, 25, 10, 5 for g241c, Digit1, USPS,
COIL, and BCI, respectively. For 100 labeled points the values
of k considered are 45, 10, 5, 5, 20 for g241c, Digit1, USPS,
COIL, and BCI, respectively.

Tables VIII and IX show the rank position obtained by each
method on different datasets for 10 and 100 labeled training



TABLE VI: Test Errors (%) with 10 Labeled Training Points

g241c Digit1 USPS COIL BCI Mean
1-NN 47.88 13.65 16.66 63.36 49.00 38.11
SVM 47.32 30.60 20.03 68.36 49.85 43.23
MVU + 1-NN 47.15 14.42 23.34 62.62 47.95 39.10
LEM + 1-NN 44.05 23.47 19.82 65.91 48.74 40.40
QC + CMN 39.96 9.80 13.61 59.63 50.36 34.67
Discrete Reg. 49.59 12.64 16.07 63.38 49.51 38.24
TSVM 24.71 17.77 25.20 67.50 49.15 36.87
SGT 22.76 8.92 25.36 – 49.59 26.66
Cluster-Kernel 48.28 18.73 19.41 67.32 48.31 40.41
Data-Dep. Reg. 41.25 12.49 17.96 63.65 50.21 37.11
LDS 28.85 15.63 17.57 61.90 49.27 34.64
Laplacian RLS 43.95 5.44 18.99 54.54 48.97 34.38
CHM (normed) 39.03 14.86 20.53 – 46.90 30.33
LGC 45.82 9.89 9.03 63.45 47.09 35.06
LP 42.61 11.31 14.83 55.82 46.37 34.19
LNP 47.82 8.58 17.87 55.50 47.65 35.48
PCC 37.57 9.94 17.44 58.65 47.66 34.25
CUSSL 40.49 12.30 17.19 59.24 – 32.31
Proposed Method 46.63 12.23 11.99 59.42 49.17 35.89

TABLE VII: Test Errors (%) with 100 Labeled Training Points

g241c Digit1 USPS COIL BCI Mean
1-NN 43.93 3.89 5.81 17.35 48.67 23.93
SVM 23.11 5.53 9.75 22.93 34.31 19.13
MVU + 1-NN 43.01 2.83 6.50 28.71 47.89 25.79
LEM + 1-NN 40.28 6.12 7.64 23.27 44.83 24.43
QC + CMN 22.05 3.15 6.36 10.03 46.22 17.56
Discrete Reg. 43.65 2.77 4.68 9.61 47.67 21.68
TSVM 18.46 6.15 9.77 25.80 33.25 18.69
SGT 17.41 2.61 6.80 – 45.03 17.96
Cluster-Kernel 13.49 3.79 9.68 21.99 35.17 16.82
Data-Dep. Reg. 20.31 2.44 5.10 11.46 47.47 17.36
LDS 18.04 3.46 4.96 13.72 43.97 16.83
Laplacian RLS 24.36 2.92 4.68 11.92 31.36 15.05
CHM (normed) 24.82 3.79 7.65 – 36.03 18.07
LGC 41.64 2.72 3.68 45.55 43.50 27.42
LP 30.39 3.05 6.98 11.14 42.69 18.85
LNP 44.13 3.27 17.22 11.01 46.22 24.37
PCC 24.20 2.65 4.65 14.85 44.38 18.15
CUSSL 26.15 2.52 4.81 23.13 – 14.15
Proposed Method 36.16 3.2 4.47 11.41 47.39 20.53

TABLE VIII: Ranking of semi-supervised methods with 10
labeled training points

g2
41

c
Digi

t1
USPS

COIL
BCI

M
ea

n

1-NN 17 12 6 10 10 11
SVM 15 19 15 17 16 16.4
MVU + 1-NN 14 13 17 9 6 11.8
LEM + 1-NN 11 18 14 14 8 13
QC + CMN 6 4 3 7 18 7.6
Discrete Reg. 19 11 5 11 14 12
TSVM 2 16 18 16 11 12.6
SGT 1 3 19 – 15 9.5
Cluster-Kernel 18 17 13 15 7 14
Data-Dep. Reg. 8 10 11 13 17 11.8
LDS 3 15 9 8 13 9.6
Laplacian RLS 10 1 12 1 9 6.6
CHM (normed) 5 14 16 – 2 9.25
LGC 12 5 1 12 3 6.6
LP 9 7 4 3 1 4.8
LNP 16 2 10 2 4 6.8
PCC 4 6 8 4 5 5.4
CUSSL 7 9 7 5 – 7
Proposed Method 13 8 2 6 12 8.2

TABLE IX: Ranking of semi-supervised methods with 100
labeled training points

g2
41

c
Digi

t1
USPS

COIL
BCI

M
ea

n

1-NN 18 16 9 10 18 14.2
SVM 7 17 17 12 3 11.2
MVU + 1-NN 16 7 11 16 17 13.4
LEM + 1-NN 14 18 14 14 10 14
QC + CMN 6 10 10 2 12 8
Discrete Reg. 17 6 4 1 16 8.8
TSVM 4 19 18 15 2 11.6
SGT 2 3 12 – 11 7
Cluster-Kernel 1 14 16 11 4 9.2
Data-Dep. Reg. 5 1 8 6 15 7
LDS 3 13 7 8 8 7.8
Laplacian RLS 9 8 5 7 1 6
CHM (normed) 10 15 15 – 5 11.25
LGC 15 5 1 17 7 9
LP 12 9 13 4 6 8.8
LNP 19 12 19 3 13 13.2
PCC 8 4 3 9 9 6.6
CUSSL 11 2 6 13 – 8
Proposed Method 13 11 2 5 14 9

points, respectively. As we can observe, the CGC achieved an
average result of 8.2 and 9 among 19 methods.

V. CONCLUSIONS

The huge growth of unlabeled data associated with the
costly procedures required to obtain labeled data has made
semi-supervised learning approaches a promising solution in
many applications. At the same time, unsupervised tech-
niques also have been attracting a lot of attention of research
community. In this scenario, taking advantage of the recent
developments in unsupervised approaches for making new
advances in semi-supervised learning tasks can represent a
great research venue.

In this paper, we exploit this investigation line by proposing
a novel semi-supervised classifier based on a manifold learn-
ing approach and a correlation graph, inspired by a recent
unsupervised approach [10]. A new semi-supervised similarity
measure is proposed and a voting strategy based on the graph

structure is used to perform classification tasks. The method
was evaluated considering various datasets and comparisons
with diverse supervised and semi-supervised methods. The
results are positive in most of datasets, achieving error rates
comparable to baseline methods and some remarkable results,
as the high-accuracy rate of 93.28% with only 2% of training
data on the well-known Iris dataset.

We believe that the work represents an important contribu-
tion regarding the possibility of exploiting the recent advances
obtained by graph and rank-based approaches [34], [35], [11]
in unsupervised scenarios for semi-supervised learning tasks.
As future work, we intend to investigate other correlation
measures and different voting strategies.
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