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ABSTRACT
Due to the increasing availability of image and multimedia
collections, unsupervised post-processing methods, which are
capable of improving the effectiveness of retrieval results
without the need of user intervention, have become indispens-
able. This paper presents the Unsupervised Distance Learning
Framework (UDLF), a software which enables an easy use
and evaluation of unsupervised learning methods. The frame-
work defines a broad model, allowing the implementation of
different unsupervised methods and supporting diverse file
formats for input and output. Seven different unsupervised
methods are initially available in the framework. Executions
and experiments can be easily defined by setting a configura-
tion file. The framework also includes the evaluation of the
retrieval results exporting visual output results, computing
effectiveness and efficiency measures. The source-code is pub-
lic available, such that anyone can freely access, use, change,
and share the software under the terms of the GPLv2 license.
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1 INTRODUCTION
The facilities in image acquisition and sharing available
nowadays have been resulted in profound changes in human
lifestyle. Mainly supported by the development of mobile de-
vices, social networks, and cloud environments, visual content
have become the mean of communication for a growing num-
ber of people. Considering the huge and increasing amount
of image collections available, the development of automatic
methods for analysing, indexing and searching the visual
content became indispensable.
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In this scenario, Content-Based Image Retrieval (CBIR)
systems have been established as a central solution [7]. The
main objective of such systems consists in retrieving relevant
images ranked according to their similarity to a query input.
Initially, the ranking tasks relied only in the comparison be-
tween images based on their low-level features. Therefore, for
many years, the progress of CBIR systems have been mainly
supported by the development of diverse visual features [2].
In order to provide a common and public available implemen-
tation of such features, open-source tools as LIRE [9] and
Eva [20] have been proposed.

However, the retrieval model grounded on pairwise com-
parisons computed between feature vectors faces serious
challenges. Such model analyzes similarity only in terms
of pairs of images, ignoring the global relationships en-
coded in the dataset. More recently, various methods [1, 3–
5, 14, 15, 17, 18, 21, 25–28] have focused on other stages
of the retrieval process, post-processing the initial results
in order to improve the retrieval effectiveness, without the
need of user intervention. Generally, such methods compute
unsupervised global affinity measures capable of consider-
ing the intrinsic manifold structure of datasets. Although
such methods represent an indispensable tool for improving
the retrieval results, few of them are public available and,
when available, require specific software environments and in-
put/output formats. In this scenario, a common tool capable
of executing different methods under a unified environment
is missing.

In this work, we introduce the Unsupervised Distance
Learning Framework (UDLF), which provides a software
environment to easily implement, use, and evaluate unsu-
pervised post-processing methods. The framework defines a
general model, allowing the implementation of different meth-
ods, based on distance measures or rank information. The
user can easily select the method to be executed and set the
respective parameters. Different file formats (for both input
and output) are supported, and effectiveness and efficiency
evaluation are also available. The framework includes the
implementation of seven different unsupervised methods and
is licensed under the terms of the GPLv2, such that it can
be easily extended.

The paper is organized as follows: Section 2 presents the
main aspects of the framework and describes the methods
currently implemented; Section 3 describes the use of the
framework and discusses some examples. Finally, Section 4
discusses the conclusions and presents possible future works.

Accepted version of paper published in International Conference on Multimedia Retrieval (ICMR), 2017.
DOI: https://doi.org/10.1145/3078971.3079017

https://doi.org/10.1145/3078971.3079017
https://doi.org/10.1145/3078971.3079017


ICMR ’17, June 06-09, 2017, Bucharest, Romania Lucas Pascotti Valem and Daniel Carlos Guimarães Pedronette
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Figure 1: General organization of the UDLF proposed framework in a UML class diagram.

2 UDL FRAMEWORK
As discussed, several unsupervised post-processing methods
have been proposed recently aiming at improving the effec-
tiveness of multimedia retrieval tasks. However, the imple-
mentation of such methods are not always public available
and, when provided, they do not follow any standard. In this
way, any person interested in using such methods is required
to understand the implementation, parameters configuration,
and file formats for input and output. This process is nec-
essary for each method, therefore limiting the widespread
use of such relevant tools. This paper aims to fill this gap by
introducing the Unsupervised Distance Learning Framework
(UDLF). The main objective consists in providing a software
environment which includes the follow requirements:

∙ General and extensible model: the framework de-
fines a broadly unsupervised distance learning model, which
can be used for implementing different methods. The frame-
work was initially validated considering seven distinct meth-
ods (discussed in Section 2.2) and is ready to extensions.

∙ Flexible input/output: the retrieval results can be
read and exported in different file formats, defined in terms
of distance measures or ranking information.

∙ Easy use and configuration: the code is compiled
once and different executions can be done just by changing
file paths and parameter values in a configuration file, since
no installation is required. This allows the user to easily
perform experiments using different methods and datasets.

∙ Evaluation: in addition to the processed output files,
the framework includes evaluation information considering
both effectiveness and efficiency aspects. The framework re-
ports measures as Precision, Recall and MAP (Mean Average
Precision).

The framework is an open-source software licensed under
the terms of GPLv2. The framework is public available1,
allowing anyone to access, use, and contribute with the code.

1https://github.com/UDLF/UDLF

2.1 Language and Organization
UDLF is designed trough a object-oriented paradigm and
implemented using C++ 2011. The framework is independent
of external libraries and portable among different operation
systems. Figure 1 presents a UML class diagram, which illus-
trates the general organization of the framework, including
the most important functions and attributes for each class.
The colors represent directories in which the classes are di-
vided, according to their role.

The execution flow starts from the Core classes, where
Exec parses the configuration file reading the parameters
values. The Validation class verifies if all the attributed
values are lexically acceptable. Otherwise, they are set to the
default values. All the classes of Methods are a generalization
of Udl, an abstract class which establishes a protocol to
implement new methods. Regarding the remaining classes,
while Utils encompasses all static classes that have auxiliary
purposes, Evaluation implements the necessary measures to
evaluate the results. As can be seen, different effectiveness
measures are currently implemented in the Effectiness class.
To compute the efficiency, the Time class is used as an utility
by the Udl class.

2.2 Distance Learning Methods
This section presents a briefly description of the unsupervised
methods currently implemented in the framework.

∙ Correlation Graph Manifold Learning [16]: the al-
gorithm builds a correlation graph for encoding the dataset
similarity information. The dataset manifold is analysed
through the graph and its strongly connected components,
in order to compute a more effective distance measure.

∙ Ranked List Graph Distance [12]: the method rep-
resents each ranked list as a weighted sub-graph based on its
top-𝑘 positions. Subsequently, the sub-graphs are combined
in a single graph and the weight of the edges is used to
increment the similarity scores between images.

https://github.com/UDLF/UDLF
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∙ RL-Sim* [11, 15]: the algorithm is defined in terms of
an iterative re-ranking method that computes a similarity
score between images based on the similarity of their ranked
lists. The algorithm is motivated by the conjecture that if two
images are similar, their ranked lists should also be similar.

∙ CPRR [22]: the Cartesian Product of Ranking Ref-
erences (CPRR) algorithm applies the Cartesian product
operations to 𝑘NN and reverse 𝑘NN sets aiming at consider-
ing the contextual information encoded in the ranked lists.

∙ Manifold Reciprocal kNN Graph [19]: the method
builds a graph considering the reciprocal references in the
top-𝑘 positions of the ranked lists. The method exploits the
graph structure through scores in order to analyze the dataset
manifold and compute new ranked lists.

∙ RL-Recom [23]: the algorithm exploits the concept
of recommendations among ranked lists. The motivation is
based on the conjecture that similarity information available
in the ranked lists can be used to recommend images among
themselves. In this scenario, a recommendation indicates a
reduction in the distance measures.

∙ ContextRR [13]: the method uses context images,
which are abstractions obtained from the ranked lists and
distance measures to make an analysis of the dataset as a
whole. Based on information extracted from context images,
a more effective distance measure is computed.

3 FRAMEWORK USAGE
The framework usage is mainly based on the configuration
file, which specifies all information about the execution: the
desired task, method being used, dataset information, input
and output files, evaluation settings, and other details. In
this way, no recompilation is necessary, such that the user is
able to perform a totally different execution just by changing
the configuration file. The software considers only a single
configuration file per execution, allowing the user to have
distinct configuration files for different executions.

A command line interface, which varies according to the op-
erating system, must be used to execute the software. When
the binary is executed, a config.ini file is searched in the
current directory. The user can also specify a different config-
uration file as a parameter: ./udlf my conf.ini. The next
sub-sections briefly describe the structure of the configuration
file and usage examples. More detailed information can be
found at https://github.com/UDLF/UDLF/wiki.

3.1 Configuration File
The configuration file syntax is at the same time very simple
and powerful. Basically, values are attributed to parameters
using the expression: PARAMETER = VALUE. All the parameters
are upper case and have words separated by . If a nonexistent
parameter is used, the attribution is ignored. If the attributed
value is invalid, the parameter is set to its default value,
defined in internal configuration files. Comments can be
included using the character #, such that all the text after it
is ignored.

Listing 1 shows an example of configuration file. The com-
ments contain explanations about parameter meaning and its
acceptable values (provided by the regular expressions). For

a better organization, the parameters were separated into
five different categories, which are described in the following.

Listing 1: Configuration file example.

0 #The comments follow the structure:

1 #PARAMETER = VALUE #( regular expression): Explanation about the parameter

2 #If a regular expression is not specified , any input string can be used

3 #To simplify the expressions , we adopt:

4 #TBool = (TRUE|FALSE)

5 #TUInt = (0-9)*

6 #TFloat = ["+"|" -"] [0-9]* ["."] [0-9]+

7
8 #CATEGORY 1. GENERAL CONFIGURATION

9 UDL_TASK = UDL #(UDL|FUSION): Selection of task to be executed

10 UDL_METHOD = CPRR #(NONE|CPRR|RLRECOM|RLSIM|CONTEXTRR|RECKNNGRAPH|RKGRAPH|

CORGRAPH): Selection of method to be executed

11 #CATEGORY 2. INPUT FILE SETTINGS

12 SIZE_DATASET = 1400 #(TUint): Number of images in the dataset

13 INPUT_FILE_FORMAT = MATRIX #(MATRIX|RK): Format of input file

14 INPUT_MATRIX_TYPE = DIST #(DIST|SIM): Type of matrix file

15 INPUT_RK_FORMAT = NUM #(NUM|STR): Format of ranked list file

16 MATRIX_TO_RK_SORTING = HEAP #(HEAP|INSERTION): Convert matrix to rks

17 NUM_INPUT_FUSION_FILES = 2 #(TUint): Number of files for FUSION tasks

18 INPUT_FILES_FUSION_1 = input1.txt #Path of the first input file

19 INPUT_FILES_FUSION_2 = input2.txt #Path of the second input file

20 #INPUT_FILES_FUSION_* = input *.txt #Path of the *th input file

21 INPUT_FILE = input.txt #Path of the main input file (matrix/rks)

22 INPUT_FILE_LIST = list.txt #Path of the list file

23 INPUT_FILE_CLASSES = classes.txt #Path of the classes file

24 INPUT_IMAGES_PATH = images/ #Dataset images path

25 #CATEGORY 3. OUTPUT FILE SETTINGS

26 OUTPUT_FILE = TRUE #(TBool): Generate output file(s)

27 OUTPUT_FILE_FORMAT = MATRIX #(RK|MATRIX): Format of output file

28 OUTPUT_MATRIX_TYPE = DIST #(DIST|SIM): Type of matrix file to output

29 OUTPUT_RK_FORMAT = ALL #(NUM|STR|HTML|ALL): Output format for rks

30 OUTPUT_FILE_PATH = output #Path of the output file(s)

31 OUTPUT_HTML_RK_PER_FILE = 1 #(TUint): Number of rks for each html file

32 OUTPUT_HTML_RK_SIZE = 20 #(TUint): Number of images per ranked list

33 OUTPUT_HTML_RK_COLORS = TRUE #(TBool): Color borders around images

34 OUTPUT_HTML_RK_BEFORE_AFTER = TRUE #(TBool): Comparison of rks

35 #CATEGORY 4. EVALUATION SETTINGS

36 EFFICIENCY_EVAL = TRUE #(TBool): Enable efficiency evaluation

37 EFFECTIVENESS_EVAL = TRUE #(TBool): Enable effectiveness evaluation

38 EFFECTIVENESS_COMPUTE_PRECISIONS = TRUE #(TBool): Compute precisions

39 EFFECTIVENESS_COMPUTE_MAP = TRUE #(TBool): Compute MAP

40 EFFECTIVENESS_COMPUTE_RECALL = TRUE #(TBool): Compute recall

41 EFFECTIVENESS_RECALL_AT = 40 #(TUint): Position to compute recall

42 EFFECTIVENESS_PRECISIONS_TO_COMPUTE = 5, 20 #(TUint ["," TUint ]*):

Precisions to be computed (unsigned integers separated by commas)

43 #CATEGORY 5. METHOD PARAMETERS

44 PARAM_CPRR_L = 400 #(TUint): Size of ranked lists to consider

45 PARAM_CPRR_K = 20 #(TUint): Number of nearest neighbors

46 PARAM_CPRR_T = 2 #(TUint): Number of iterations

1. General configuration: the execution type and the
method to be executed are defined in lines 9 and 10, respec-
tively. For the execution types, the available options are re-
ranking (traditional distance learning) and rank-aggregation
(fusion distance learning). Regarding the methods, there is
an option called NONE, which can be used to easily perform
an execution to change file formats or evaluate files.

2. Input file settings: the main input files encode similar-
ity information, generally provided by visual descriptors. The
files are supported both in the ranked lists (numeric or string)
or matrices (similarity or distance) format. Lines 13, 14, and
15 define the format to be used. While only one main input
file is considered for UDL tasks (line 21), FUSION tasks consider
two or more main input files (lines 17-20). Lines 22, 23 and 24
specify the list file, the classes file, and the images path (used
to export visual results to html), respectively. The list file
is always required because it offers the name of each image.
However, the classes file is only necessary when effectiveness
evaluation is enabled. Internally, the framework can convert
matrices to ranked lists using the sorting method specified in
line 16. Complete examples of input files for distinct datasets
are available at https://github.com/UDLF/Datasets.

3. Output file settings: analogous to the input files, the
output format can also be configured. Additionally, there
is a feature for exporting ranked lists to HTML files, which
provides visual results (customized in lines 31-34).

https://github.com/UDLF/UDLF/wiki
https://github.com/UDLF/Datasets
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4. Evaluation settings: an evaluation report can be
provided in the end of execution, containing information
as the time elapsed (line 36) and effectiveness measures as
Precision, Recall, and MAP (lines 38, 39 and 40, respectively).
Recall and Precision measures can be computed considering
different depths of the ranked lists (lines 41 and 42).

5. Method parameters: definition of parameters set-
tings, according to the method being executed (CPRR [22]
in this example, lines 44-46).

3.2 Input/Output File Formats
The framework input is composed by three files: list, classes
and ranked lists (or matrix). The list file considers each line
as an identifier for a dataset element, as shown in Listing 2.
For the effectiveness evaluation, each image is associated to
a class, information that is defined in the classes file using
the expression: image:class. An example of a classes file is
presented in Listing 3. Ranked lists can be represented in
both numeric or string format. A string example is shown
in Listing 4. Each line corresponds to a ranked list and the
name of the images are separated by spaces. The output file
is generated according to the same format.

Listing 2: List file.

0 apple1.png

1 apple2.png

2 bird1.png

3 bird2.png

4 bat1.png

5 bat2.png

Listing 3: Classes file.

0 apple1.png:apple

1 apple2.png:apple

2 bird1.png:bird

3 bird2.png:bird

4 bat1.png:bat

5 bat2.png:bat

Listing 4: Ranked list file example - string format.

0 apple1.png apple2.png bird1.png bat1.png bat2.png bird2.png

1 apple2.png apple1.png bird2.png bird1.png bat1.png bat2.png

2 bird1.png bird2.png bat2.png apple2.png apple1.png bat1.png

3 bird2.png bird1.png bat2.png apple1.png apple2.png bat1.png

4 bat1.png bat2.png apple1.png apple2.png bird2.png bird1.png

5 bat2.png apple1.png apple2.png bat1.png bird2.png bird1.png

3.3 Execution Reports and Visual Results
The framework also generates execution reports and visual
retrieval results. Listing 5 shows an example of an execution
report (log.txt) generated by the framework.

Listing 5: Example of log.txt file.

0 - GENERAL INFORMATION -

1 Task: UDL

2 Method: CPRR

3 Dataset Size: 1400

4 Image List File: desc/lists/mpeg7.txt

5 Image Class File: desc/classes/mpeg7.txt

6 Input File: desc/matrices/mpeg7/cfd.txt

7 Input Format: MATRIX DIST

8 Output File: output/output

9 Output Format: RK ALL

10 --------------------------------------

11 - METHOD PARAMETERS -

12 PARAM_CPRR_K = 20

13 PARAM_CPRR_L = 400

14 PARAM_CPRR_T = 2

15 --------------------------------------

16 - EVALUATION RESULTS -

17 * Efficiency: Total Time of the Algorithm Execution: 0.0438 s

18 * Effectiveness:

19 Before:

20 P@20 0.7559

21 Recall@40 0.8444

22 MAP 0.8064

23 After:

24 P@20 0.8979

25 Recall@40 0.9477

26 MAP 0.9215

27 Relative Gains:

28 P@20 +18.7866%

29 Recall@40 +12.2404%

30 MAP +14.2707%

31 --------------------------------------

32 Log generated at 2017/1/26 16:37:24

The report is organized in sections, providing various in-
formation about the framework execution. Firstly, general
information about the input/output files are shown. Next,
the parameters of the executed method are presented. Finally,
effectiveness and efficiency measures are reported, including
the effectiveness gains obtained.

Figure 2 presents visual examples of ranked lists exported
from executions of the framework considering different image
datasets (Corel5k [8], MPEG-7 [6], OxfordFlowers-17 [10] and
Soccer [24], respectively). The query images are presented
in green borders and wrong results in red borders. The first
line represents the original retrieval results and the second
line, the results after the algorithm execution.

Figure 2: Visual examples showing the impact of dis-
tance learning on retrieval results.

4 CONCLUSIONS
In this work, we have presented UDLF, an open-source soft-
ware that currently contains seven different unsupervised
distance learning methods for multimedia retrieval. As future
work, we intend to keep improving the software incorporating
new features and other methods from different authors. We
also intend to provide scripts, facilitating conversions between
file formats and providing a visual interface to generate the
configuration file. This facilitates the execution of experi-
ments for users that do not want to use the command line.
Aiming at maximizing the performance of the algorithms,
parallel computing versions of the methods can also be im-
plemented. We intend to provide more information about
how the framework can be expanded, allowing the scientific
community to contribute to the software.
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