
Effective, Efficient, and Scalable Unsupervised Distance
Learning in Image Retrieval Tasks

Lucas Pascotti Valem1, Daniel Carlos Guimarães Pedronette1,
Ricardo da S. Torres2, Edson Borin2, Jurandy Almeida3

1Dept. of Statistic, Applied Math. and Computing, Universidade Estadual Paulista (UNESP), Rio Claro, Brazil
2Institute of Computing, University of Campinas (UNICAMP), Campinas, Brazil

3Institute of Science and Technology, Federal University of São Paulo (UNIFESP), São José dos Campos, Brazil

ABSTRACT
Various unsupervised learning methods have been proposed
with significant improvements in the effectiveness of image
search systems. However, despite the relevant effectiveness
gains, these approaches commonly require high computation
efforts, not addressing properly efficiency and scalability re-
quirements. In this paper, we present a novel unsupervised
learning approach for improving the effectiveness of image
retrieval tasks. The proposed method is also scalable and
efficient as it exploits parallel and heterogeneous comput-
ing on CPU and GPU devices. Extensive experiments were
conducted considering five different public image collections
and several descriptors. This rigorous experimental protocol
evaluates the effectiveness, efficiency, and scalability of the
proposed approach, and compares it with previous meth-
ods. Experimental results demonstrate that high effective-
ness gains (up to +29%) can be obtained requiring small run
times.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Search pro-
cess

General Terms
Experimentation, Performance

Keywords
content-based image retrieval; unsupervised learning; effec-
tiveness; efficiency; scalability

1. INTRODUCTION
Advances in image acquisition technologies coupled with

sharing and storage facilities have triggered a huge growth
of image collections. Given the increasing amount of avail-
able digital images, the development of effective and efficient
systems for indexing and organizing this visual content is

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
ICMR’15, June 23–26, 2015, Shanghai, China.
Copyright c© 2015 ACM
DOI: http://dx.doi.org/10.1145/2671188.2749336.

mandatory. In this scenario, the use of Content-Based Im-
age Retrieval (CBIR) systems for dealing with this challenge
constitutes one of the most promising approaches.

The general goal of CBIR systems consists in retrieving a
collection of relevant images according to their visual sim-
ilarity to query patterns defined by users. A common re-
trieval task, for example, consists in retrieving similar im-
ages to a given query image by considering visual proper-
ties such as shape, texture, and color. In general, CBIR
approaches extract low-level features of images generating
a feature vector which represents them. The similarity be-
tween images is computed according to the distance between
their correspondent feature vectors, using a distance mea-
sure (e.g., the Euclidean distance).

The creation of novel visual features and distance mea-
sures has supported the development of CBIR approaches
for decades. This development, however, has not been ad-
dressing properly the semantic gap problem, which consists
in the difficulties in mapping low-level features to high-level
concepts. More recently, aiming at dealing with the seman-
tic gap and improving the search effectiveness performance,
other stages of the retrieval pipeline not directly related to
low-level feature extraction have been considered [21].

In this scenario, unsupervised post-processing methods
capable of computing a more effective distance measure
among images have been proposed [16, 38]. The general
objective of these methods consists in replacing pairwise
similarities by more global affinity measures [39]. Several
methods have been employed with this purpose, such as dif-
fusion process [38, 39], graph-based learning methods [37],
and iterative re-ranking approaches [28, 29]. Other methods
improve the distance measures by capturing and exploiting
the intrinsic manifold structure of the datasets [2, 15].

In fact, different approaches have demonstrated the capa-
bility of producing relevant gains in terms of quality of image
searches. Nevertheless, most of the proposed approaches are
evaluated considering only effectiveness aspects, ignoring ef-
ficiency and scalability properties. Focusing on real-word
applications, however, the three aspects should be consid-
ered at the same time. In addition to the quality of the
retrieval process, the time spent to obtain the results and
the capability of handling growing image collections are also
indispensable.

This paper presents a novel unsupervised distance learn-
ing method that considers these three relevant aspects. The
proposed RL-Recommendation algorithm exploits the infor-
mation encoded in the ranked lists through unsupervised
recommendations among images. While the effectiveness

Accepted version of paper published in International Conference on Multimedia Retrieval (ICMR), 2015.
DOI: http://dx.doi.org/10.1145/2671188.2749336

http://dx.doi.org/10.1145/2671188.2749336

gains are comparable with other similar approaches, the al-
gorithm requires very low computation efforts as it uses only
a portion of the ranked lists. The use of only top positions
of ranked lists allows for taking advantage of existing index-
ing schemes, making it suitable for large image collections.
In addition, we also designed and implemented a parallel
solution of the algorithm that considers heterogeneous com-
puting using CPUs and GPUs.

An extensive set of experiments was conducted, consider-
ing five public datasets of different sizes and several image
descriptors. Different experiments were conducted aiming at
assessing the effectiveness, efficiency, and scalability of the
proposed approach. The experimental evaluation demon-
strates that the proposed method can achieve significant ef-
fectiveness improvements in several image retrieval tasks.
Experimental results also show that the gains can be ob-
tained for various size of image collections with very small
run times. The proposed RL-Recommendation algorithm is
also evaluated in comparison with other recently proposed
methods and several state-of-the-art approaches considering
a shape dataset commonly used for benchmarking.

The paper is organized as follows: Section 2 introduces
the problem definition; Section 3 presents the proposed un-
supervised learning algorithm; Section 4 shows the exper-
imental results; finally, Section 5 discusses the conclusions
and presents possible future work.

2. PROBLEM FORMULATION
This section aims at providing a formal definition of im-

age retrieval model and the unsupervised distance learning
problem considered. Let C={img1, img2, . . . , imgn} be an
image collection, where n is the size of the collection C.

Let D be an image descriptor that can be defined [9] as a

tuple (ε, ρ), where ε: Î → Rm is a function, which extracts a

feature vector vÎ from an image in Î; and ρ: Rm×Rm → R is
a distance function that computes the distance between two
images according to the distance between their correspond-
ing feature vectors. The value of ρ(ε(imgi), ε(imgj)) defines
the distance between two images imgi and imgj . The nota-
tion ρ(i, j) is used for denoting this distance along the paper
for simplicity and readability purposes.

The distance ρ(i, j) among all images imgi, imgj ∈ C can
be computed to obtain a squared n × n distance matrix A,
such that Aij = ρ(i, j). The distance matrix A is used as
the input for various unsupervised learning algorithms, but
often cause scalability difficulties for large image collections,
leading to storage and time complexity of at least O(n2).

An alternative representation of retrieval results is based
on ranked lists. Based on the distance function ρ, a ranked
list τq can be computed in response to a query image imgq.
The ranked lists can contain information from the entire
collection, and especially their top positions are expected
to contain the most relevant images related to the query
image. Therefore, one suitable strategy for speeding up the
searching process consists in considering a subset of the L
most similar images, where L� n is the number of images
at top positions of the ranked list. This is a useful strategy
specially for large collections, where n is very large, and
therefore τq is very expensive to compute.

The ranked list τq=(img1, img2, . . . , imgL) can be de-
fined as a permutation of the image collection Cs ⊂ C, which
contains the most similar images to query image imgq, such
that and |Cs| = L. A permutation τq is a bijection from the

set Cs onto the set [L] = {1, 2, . . . , L}. For a permutation τq,
we interpret τq(i) as the position (or rank) of image imgi in
the ranked list τq. We can say that, if imgi is ranked before
imgj in the ranked list of imgq, that is, τq(i) < τq(j), then
ρ(q, i) ≤ ρ(q, j).

Taking every image imgi ∈ C as a query image imgq, we
can obtain a set R = {τ1, τ2, . . . , τn} of ranked lists for
each image of the collection C. The objective of this work
consists in proposing an algorithm for redefining the set of
ranked lists R producing a more effective set Re. Therefore,
the unsupervised distance learning algorithm can be defined
as a function fu, such that:

Re = fu(R). (1)

The objective of function fu is to exploit the set R by
performing unsupervised recommendations based on infor-
mation encoded in the top positions of ranked lists.

3. RL-RECOMMENDATION
ALGORITHM

The proposed RL-Recommendation (Ranked Lists-
Recommendation) algorithm is mainly based on the con-
cept of supporting unsupervised recommendations among
images. Recommendation approaches, originally created for
automatically selecting items that match personal prefer-
ences, are simulated by the proposed algorithm in an unsu-
pervised way. The recommendations are performed based
on information encoded in ranked lists, in which images at
top positions are recommended to each other. In this sce-
nario, the recommendation means that the distance between
two images should be decreased, and therefore, they should
be moved up in the ranked lists of each other.

The presented method is closely related to the recently
proposed Pairwise Recommendation [28] algorithm. How-
ever, our approach differs in important aspects. While the
Pairwise Recommendation [28] requires the distance among
all images in a dataset as data entry, our method requires
only the top positions of ranked lists, which can be obtained
taking advantage of indexing strategies. In addition, the
proposed RL-Recommendation algorithm dispenses the use
of clustering steps and requires a low number of iterations for
convergence. As a result, the algorithm requires much less
computing power being designed for parallel computation
and becoming suitable for ever-growing real-world datasets.

The RL-Recommendation algorithm can be broadly de-
scribed considering four main steps:

1. Computing the Sparse Distance Matrix: the ex-
pected input of the algorithm consists of the set ranked
listsR, which ensures scalability properties of the algo-
rithm. However, since the unsupervised recommenda-
tions require distance scores, they are computed based
on ranked lists. Only the distances among images at
top positions of ranked lists are considered, leading to
a sparse distance matrix A.

2. Computing the Cohesion Measure: the cohe-
sion [28] measure provides an unsupervised estimation
of effectiveness of ranked lists. The motivation is based
on the conjecture that effective ranked lists have more
authority for making recommendations. The cohesion
measure is also used as a convergence criterion: the
recommendations are performed while the cohesion of
ranked lists are increasing.

3. Performing Unsupervised Recommendations:
the top positions of ranked lists represent the infor-
mation with the higher accuracy provided by image
descriptors. This information, exploited for creating a
top-k image profile, supports the unsupervised recom-
mendations. If two images are contained in this profile,
it constitutes an indication of similarity, producing a
recommendation which reduces the distance between
them.

4. Sorting Ranked Lists: the recommendations change
the distances among images. Therefore, ranked lists
must be updated to reflect the new ranking. A sorting
procedure is performed aiming at updating the ranked
lists according to the new computed distances.

Steps 2-4 are repeated while the average cohesion of
ranked lists continues increasing above a given threshold.
The parameter k, which defines the top-k positions used for
cohesion and recommendations, is incremented at each iter-
ation. Next sections describe in details each step and present
the parallel solution proposed.

3.1 Computing the Sparse Distance Matrix
The expected input of the algorithm (as discussed in Sec-

tion 2) consists of the set of ranked lists. In fact, since
the unsupervised recommendations require distance scores,
we propose to estimate distances based on the information
given by the ranked lists. We consider only the distances
among images at top-L positions of ranked lists, leading to
a very sparse distance matrix A (with approximately n× L
values used). The objective is to ensure the scalability of
the algorithm.

The distance between two images is computed based on
the sum of the reciprocal references at their ranked lists.
Formally, given two images imgq and imgi, their distance
ρ(q, i) is defined as ρ(q, i) = τq(i) + τi(q). According to this
formulation, the distance matrix A (such that Aqi = ρ(q, i))
can be easily computed processing all ranked lists by sum-
ming up the reciprocal positions. However, the references
are not symmetric and the ranked lists do not contain all
images (only top L positions). Therefore, we can observe
situations where imgi is in the ranked lists of imgq but the
inverse is not true (imgi ∈ τq but imgq /∈ τi).

An alternative solution is proposed in Algorithm 1. In
the first part (Lines 1-6), the ranked lists are processed and
all pairs of images, which present references, have their dis-
tances set to 2×L (even if the references are not reciprocal).
In the second part (Lines 7-11), each ranked list reference
produces a decrement of L and an increment of the reference
position (τq(i)). In this way, for pairs of images which refer
to each other at top L positions, the initial values are re-
placed by their respective positions. For pairs in which only
one image refers the other, one of the two position remains
L. The algorithm has the complexity of O(n× L).

3.2 Cohesion Measure
A cohesion measure [28] is used to provide an unsuper-

vised estimation of the effectiveness of ranked lists. High
cohesion scores indicate that ranked lists have more author-
ity to recommend than others. The cohesion measure aims
at assessing the quality of ranked lists by analyzing how im-
ages refer to each other in their ranked lists. The objective
consists in evaluating the density of references among images
at top positions of a given ranked list. For highly-effective

Algorithm 1 Sparse Distance Matrix Computing.

Require: Blank matrix A and set of ranked lists R
Ensure: Processed sparse distance matrix A

//Sparse Distance Matrix Computing - Part I
1: for all imgq ∈ C do
2: for all imgi ∈ τq do
3: Aqi ← 2× L
4: Aiq ← 2× L
5: end for
6: end for

//Sparse Distance Matrix Computing - Part II
7: for all imgq ∈ C do
8: for all imgi ∈ τq do
9: Aqi ← Aqi + τq(i)− L

10: end for
11: end for

ranked lists, the images at top positions are expected to refer
to each other at the top positions of their ranked lists.

Let k(τi) be a subset of a ranked list τi with its top-k
positions (or k-Nearest Neighbors). Let imgj ∈ k(τi) be an
image of this subset, and let k(τj) be a subset of the ranked
list of image imgj . Finally, let imgp ∈ k(τj) be an image at
position τj(p) of the ranked list τj . The cohesion c(τi, k) of
a ranked list τi can be defined as follows:

c(τi, k) =

∑
imgj∈k(τi)

∑
imgp∈k(τj) w(τj(p))× s(k(τi), imgp)∑

imgj∈k(τi)
∑
imgp∈k(τj) w(τj(p))

(2)

where function s determines if the image imgp (that belongs
to subset k(τi)) also belongs to subset k(τk) and is defined
as follows:

s(k(τi), imgp) =

{
1, if imgp ∈ k(τi)
0, otherwise.

(3)

The function w takes as input the position of an image in
a ranked list and gives high weights to images at the first
positions (w(p) = 1/p). Notice that, if all referenced images
are in the subset k(τi), we have a perfect cohesion. In this
situation, the function s assumes the value 1 for all images
and therefore cohesion is set to 1.

The cohesion measure is used not only for estimating the
authority of ranked lists in making recommendations, but
also for defining the convergence criterion and the stop con-
dition of the algorithm. Regarding the convergence crite-
rion, the average cohesion of all ranked lists is computed for
each iteration. The algorithm is iteratively executed until
the variation of cohesion is smaller than a threshold ε. Let
c̄ denotes the average cohesion of all ranked lists and let the
superscript (t) denotes the current iteration, the algorithm
is executed while the follow criterion is met:

(c̄ (t) − c̄ (t−1)) ≥ (c̄ (t) × ε). (4)

3.3 Unsupervised Recommendations
The unsupervised recommendations [28] are associated

with decreases of the distances among images and are de-
fined based on information encoded in the ranked lists. The
main idea behind the unsupervised recommendation given
by a ranked list τi is: “the image imgy is recommended to
image imgx, if both imgx and imgy are in the top-k positions
of the ranked list of τi.”

Each recommendation is associated with a different
weight, which defines how much the distance should be de-

Paralell:

OpenCL

Serial:
C/C++

 Fill Matrix A
 Part I
 (n workitems)

Global SynchronizationGlobal Synchronization

 Fill Matrix A
 Part II
 (n workitems)

Sum
 Cohesions

Perform
Recommendations

(n workitems)

Update/Sort
Ranked Lists

(n workitems)

Compute
Cohesions

 (n workitems)

Repeat until convergence

RLRecommendation Algorithm – Parallel Design

k=k+1

Figure 1: Design of the Parallel RL-Recommendation Algorithm.

creased. The recommendation weight considers the position
of images in ranked lists and the authority estimation of the
ranked lists, given by the cohesion measure. Algorithm 2
presents the unsupervised recommendation approach for a
given ranked list τi.

Algorithm 2 Unsupervised Recommendations.

Require: Distance matrix A, ranked list τi and cohesion ci
Ensure: Updated matrix A
1: for all imgx ∈ k(τi) do
2: wx ← 1− (τi(x)/k)
3: for all imgy ∈ k(τi) do
4: wy ← 1− (τi(y)/k)
5: w ← ci × wx × wy
6: λ← 1−min(1, α× w)
7: Axy ← min(λAxy , Ayx)
8: end for
9: end for

Values wx and wy (Lines 2 and 4) represent the weight
assigned to images imgx and imgy in the recommendation.
The weights are computed based on the position of images
in the ranked lists: for images at top positions of the ranked
list a higher weight is assigned. The weights associated with
the first positions indicate where it is more likely to find the
most similar images, that is, positions that represent more
reliable recommendations. In Line 5, the weight w of a rec-
ommendation is computed. That represents the reputation
of the recommendation. For computing w, we consider wx,
wy and the cohesion ci computed for the ranked list τi.

The λ coefficient combines information of positions and
cohesion of the ranked list and is used for determining how
the distances between imgx and imgy should be decreased.
The constant α aims at adjusting the impact of recommen-
dations. By increasing the value of α, the distances among
images will decrease faster. A min function (Line 7) avoids
negative values limiting the coefficient λ to 0.

3.4 Parallel Design
This section discusses the parallel design of the RL-

Recommendation algorithm. We adopted the OpenCL stan-
dard, which is an open cross-platform, low-level API for
parallel heterogeneous computing. The OpenCL code is ex-
ecuted on a computational device, which can be a CPU,
GPU, or other accelerator. OpenCL supports both data-
parallel and task-parallel programming models, as well as
hybrid models.

Parallel pieces of code are defined in a kernel, which is
a function declared in an OpenCL Programming Language
(a subset of C language, with some restrictions and special
keywords). The kernels are executed on an OpenCL device
and each instance of a kernel running on a compute unit is
called a work-item. The same code is executed in parallel by

different work-items, and each work-item executes the code
with different data.

Figure 1 illustrates the design of the Parallel RL-
Recommendation Algorithm using six distinct kernels. Dif-
ferent kernels in OpenCL ensure global synchronization
among all work-items, i.e., all work-items of a given kernel
should finish so that the next can be started.

The first two kernels compute the distance matrix, as dis-
cussed in Section 3.1. Two kernels are used since all work-
items of “Part I ” should finish before the start of “Part
II.” The third kernel computes the cohesion measure for all
ranked lists. Each work-item computes the cohesion for a
given ranked list. The cohesion of ranked lists are serially
summed up for computing the average cohesion used for
checking the convergence criterion.

The unsupervised recommendations are computed by the
fourth kernel. We also have n work-items, each one pro-
cessing a ranked list. Although the recommendations pro-
cessing are independent, different ranked lists can update
concurrent positions of the Distance Matrix A causing the
lost of some updates. A possible solution is to ensure ex-
clusive access, but the overhead associated with fine grained
synchronization in OpenCL is significant. Therefore, as sug-
gested by other works [30], we allow direct updates to matrix
A because the loss of some updates has a very low impact
on the effectiveness of the algorithm (as demonstrated by
confidence intervals of Section 4.4).

The last kernel executes a sorting procedure for updating
the ranked lists. Since most of changes occur only in the
beginning of the ranked lists [30], we use the insertion sort
algorithm, whose complexity tends to be linear when the
input is almost sorted.

Regarding memory transfers, the algorithm’s data should
be available in the device memory before the execution of
kernels starts. The input and output data are composed
of the set of ranked lists, which should be transferred be-
fore the beginning of the execution and copied back after its
conclusion. In this work, we consider two memory transfer
models defined by the OpenCL standard: write buffer and
map buffer. For the write buffer model, the main memory
transfer should be explicitly transferred to the device mem-
ory. On the other hand, the map buffer model consists in
copying only memory pointers. Both strategies are evalu-
ated in our experiments (Section 4.4).

4. EXPERIMENTAL EVALUATION
A large experimental evaluation was conducted for assess-

ing the effectiveness, efficiency, and scalability properties of
the proposed method. Section 4.1 describes datasets and im-
age descriptors considered. Section 4.2 discusses the impact
of parameters. Section 4.3 presents the results of the effec-
tiveness evaluation, while Section 4.4 presents the efficiency
evaluation. Section 4.5 discusses scalability aspects.

Table 1: Datasets and images descriptors used in the experimental evaluation.

Dataset Size Type General Descriptors Effectiv.
Description Measure

Soccer [36] 280 Color
Scenes

Dataset composed of images from 7 soccer
teams, containing 40 images per class

Border/Interior Pixel Classification (BIC) [32], Auto
Color Correlograms (ACC) [14], and Global Color His-
togram (GCH) [33]

MAP (%)

MPEG-7 [18] 1,400 Shape A well-known dataset composed of 1400
shapes divided in 70 classes. Commonly
used for evaluation of unsupervised dis-
tance learning approaches.

Segment Saliences (SS) [10], Beam Angle Statistics
(BAS) [3], Inner Distance Shape Context (IDSC) [19],
Contour Features Descriptor (CFD) [27], Aspect Shape
Context (ASC) [20], and Articulation-Invariant Repre-
sentation (AIR) [12]

MAP (%),
Recall@40

Brodatz [6] 1,776 Texture A popular dataset for texture descriptors
evaluation composed of 111 different tex-
tures divided into 16 blocks

Local Binary Patterns (LBP) [25], Color Co-Occurrence
Matrix (CCOM) [17], Local Activity Spectrum
(LAS) [34]

MAP (%)

N-S [24] 10,200 Objects/
Scenes

Composed of 2,550 objects or scenes. Each
object/scene is captured 4 times from dif-
ferent viewpoints, distances, and illumina-
tion conditions

ACC [14], BIC [32], Color and Edge Directivity Descrip-
tor (CEED) [7], Fuzzy Color and Texture Histogram
(FCTH) [8], Joint Composite Descriptor (JCD) [40],
Scale-Invariant Feature Transform (SIFT) [22]

N-S score

ALOI [11] 72,000 Objects Images from 1,000 classes of objects, with
different viewpoint, occlusion, and illumi-
nation conditions.

ACC [14], BIC [32], GCH [33], Color Coherence Vec-
tors (CCV) [26], Local Color Histograms (LCH) [23]

MAP (%)

4.1 Datasets, Descriptors, and Experimental
Setup

The experimental evaluation was conducted on five dif-
ferent datasets with diverse characteristics and size rang-
ing from 280 to 72,000 images. The evaluation also used
18 different local and global descriptors, considering shape,
color, and texture properties. Table 1 summarizes informa-
tion about datasets and descriptors.

All images of each dataset are considered as query images
in the effectiveness evaluation. The Mean Average Preci-
sion (MAP) was used as effectiveness measure for most of
datasets, except for the N-S collection [24]. For the MPEG-
7 [18] dataset, the Recall@40 is also considered in addition
to MAP. For the ALOI dataset, we used the BP-Tree [1]
indexing structure for the computation of the ranked lists.

The efficiency evaluation experiments considered the aver-
age run time of 10 executions and 95% confidence intervals.
The hardware environment is composed of a CPU Intel Xeon
CPU E3-1240 and a GPU AMD Radeon HD 7900 Series.
The software environment is given by the operating system
Linux 3.11.0-15 - Ubuntu 12.04 and OpenCL 1.2 AMD-APP.

4.2 Impact of Parameters
The RL-Recommendation algorithm considers three pa-

rameters: (i) k: number of initial neighbors; (ii) α: a con-
stant that defines the weight of recommendations; and (iii)
ε: the threshold parameter used for the convergence crite-
rion. A set of experiments were conducted for evaluating
the influence of different parameter settings on the retrieval
scores for defining the best parameters values.

The first experiment aims at analyzing the impact of pa-
rameters k and ε. We computed the MAP scores ranging the
parameter k in the interval [0, 20] and the parameter ε from
0.005 to 0.02. The MPEG-7 [18] dataset and the CFD [27]
shape descriptor were used in the experiment. The analysis
of the variation of the MAP according to k and ε is shown
in the surface illustrated in Figure 2. We can observe small
variations on MAP scores, from 90% to 92%, which demon-
strates the robustness of the proposed method for differ-
ent parameters settings. The best effectiveness results were
obtained for k = 8 and ε = 0.0125. We used α = 2, as
suggested in [28]. These values were used in most of the ex-
periments. Only the N-S [24] and ALOI [11] datasets used
k = 4 and k = 40, respectively. Both datasets have very
small and large number of images per class.

The second experiment analyzes the constant L, which

Figure 2: Impact of parameters k and ε on effectiveness.

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

200 400 600 800 1000 1200 1400

M
A

P

L Value

Impact of Size of Ranked Lists on MAP scores

AIR
ASC
CFD

Figure 3: Impact of size of ranked lists L on effectiveness.

defines the size of ranked list used as input. As previously
discussed, the RL-Recommendation algorithm does not re-
quire the use of the entire ranked list. An experiment was
conducted using the MPEG-7 [18] dataset for verifying the
impact of the size of ranked lists on the effectiveness re-
sults. We computed the MAP scores ranging L in the inter-
val [50, 1400]. The results for three different descriptors are
shown in Figure 3.

The curve behavior reveals that a small subset of the
dataset (low L values) is enough for producing good effec-
tiveness results. In addition, for values of L greater than
400, the MAP scores stop increasing expressively for all the
descriptors. We used the value of L = 400 for most of ex-
periments.1

1
The value of L used for the Soccer [36] dataset is limited by the

dataset size (L = 280). For the ALOI [11] and N-S datasets we used
L = 7200 and L = 200, respectively.

Table 2: Effectiveness evaluation of the proposed RL-Recommendation algorithm con-
sidering various datasets and descriptors (MAP as score).

Descriptor Dataset Original Pairwise RL-Recom. RL-Recom. Gain
MAP Recom. [28] Serial Parallel GPU

SS [10] MPEG-7 37.67% 39.90% 48.68% 48.64% ± 0.0062 +29.22%
BAS [3] MPEG-7 71.52% 77.65% 79.58% 79.57% ± 0.0047 +11.27%

IDSC [19] MPEG-7 81.70% 86.83% 88.80% 88.78% ± 0.0067 +11.86%
CFD [27] MPEG-7 80.71% 91.38% 91.39% 91.37% ± 0.0055 +13.23%
ASC [20] MPEG-7 85.28% 91.80% 91.34% 91.32% ± 0.0050 +7.11%
AIR [12] MPEG-7 89.39% 95.50% 96.12% 96.12% ± 0.0071 +7.53%
GCH [33] Soccer 32.24% 32.35% 34.38% 34.44% ± 0.0340 +6.64%
ACC [14] Soccer 37.23% 40.31% 41.23% 41.20% ± 0.0239 +10.74%
BIC [32] Soccer 39.26% 42.64% 45.15% 45.17% ± 0.0693 +15.00%
LBP [25] Brodatz 48.40% 51.92% 51.26% 51.24% ± 0.0047 +5.91%

CCOM [17] Brodatz 57.57% 66.46% 64.34% 64.32% ± 0.0059 +11.76%
LAS [34] Brodatz 75.15% 80.73% 79.71% 79.71% ± 0.0031 +6.07%

90

90.5

91

91.5

92

10-2 10-1 100 101

M
A

P
 (

%
)

Time (s) (logarithmic scale)

Comparison of effectiveness and efficiency on MPEG-7 dataset

RL-Sim Serial
RL-Sim Parallel

Pairwise Recom. Serial
RL-Recom. Serial

RL-Recom. Parallel GPU
RL-Recom. Parallel CPU

Figure 4: Effectiveness and efficiency analysis
on the MPEG-7 [18] dataset.

Table 3: Effectiveness evaluation on the N-S [24] dataset, con-
sidering the N-S score.

Descriptor Type Original RL- Gain
Score Recom.

ACC [14] Color 3.36 3.53 +5.06%
BIC [32] Color 3.04 3.15 +3.62%

CEED [7] Color/Text. 2.61 2.72 +4.21%
FCTH [8] Color/Text. 2.73 2.80 +2.56%
JCD [40] Color/Text. 2.79 2.88 +3.23%
SIFT [22] Local 2.54 2.88 +13.39%

Table 4: Effectiveness evaluation on the ALOI dataset [11], consid-
ering MAP as score.

Descriptor Original Baseline: RL- Gain
MAP RL-Sim [13] Recom.

ACC [14] 44.15% 46.12% 50.11% +13.50%
BIC [32] 71.95% 78.84% 80.35% +11.67%
CCV [26] 47.77% 50.96% 53.52% +12.04%
GCH [33] 50.87% 53.14% 55.81% +9.71%
LCH [23] 58.85% 66.03% 72.63% +23.42%

4.3 Effectiveness Evaluation
This sections aims at assessing the effectiveness of the pro-

posed algorithm. A large set of experiments was conducted,
considering various datasets and several descriptors.

Table 2 presents the MAP results for three datasets, con-
sidering shape, color, and texture features. We report the
MAP scores for both serial and parallel GPU implementa-
tion of the RL-Recommendation algorithm. For the par-
allel GPU execution, the result is an average of 10 execu-
tions with the respectively 95% confidence interval. Notice
that the confidence intervals are very small, indicating a low
variation among different executions. The relative gain is
computed based on serial execution. Very significant gains
are observed for most of descriptors, ranging from +5.92%
to +29.22%. For comparison purposes, we also reported
the MAP scores of the Pairwise Recommendation [28] algo-
rithm. The effectiveness results of the RL-Recommendation
are significantly superior for most of the descriptors.

The effectiveness results considering the N-S [24] dataset
are presented in Table 3. For this dataset, the N-S retrieval
score between 1 and 4 is computed. This score corresponds
to the number of relevant images among the first four im-
age returned (the highest achievable score is 4). The N-
S [24] is a very challenging dataset for unsupervised learn-
ing algorithms due to the small number of images per class
(only 4). Despite this characteristic of the dataset, the RL-
Recommendation achieved gains ranging from +2.56% to
+13.39%.

Table 4 presents the MAP scores considering the
ALOI [11] dataset. The ALOI [11] dataset is the biggest
considered in the experiments and used indexing structures
of the ranked lists computation. The gains obtained by
the RL-Recommendation are also very significant for this
dataset ranging from +9.71% to 23.42%. We also report
the MAP scores for a recent baseline, the RL-Sim [13] al-
gorithm. Notice that the RL-Recommendation effectiveness
results are superior for all the descriptors.

A joined effectiveness and efficiency analysis conducted on
the MPEG-7 [18] dataset is presented in Figure 4. The Pair-

Figure 5: Impact of the RL-Recommendation on the ALOI [11]
dataset: two ranked lists before and after the algorithm (query
images with green borders and wrong results with red borders).

wise Recommendation [28] and the RL-Sim algorithms [29,
31] are considered as baselines. The position of algorithms
in the graph is given by the MAP score and the run time.
Therefore, an ideal algorithm, with high effectiveness and
low run time, is positioned at the top-left corner of the
graph. Notice that the RL-Recommendation Algorithm (se-
rial and parallel) occupies the best positions.

Two visual examples of the impact of the RL-
Recommendation algorithm on ranked lists are illustrated in
Figure 5. The query images are presented in green borders
and wrong results in red borders. The first line represents
the original retrieval results and the second line, the results
after the algorithm execution.

Finally, we also evaluate our method in comparison with
several other state-of-the-art unsupervised learning meth-
ods. We use the MPEG-7 [18] and the Bull’s Eye Score (Re-
call@40), commonly used for evaluation and comparison of
post-processing methods. Table 6 presents the results. We
can observe that the RL-Recommendation achieved compa-
rable effectiveness results, despite of the low computational
efforts required.

4.4 Efficiency Evaluation
We conducted a set of experiments aiming at evaluating

the efficiency of the proposed RL-Recommendation algo-
rithm. Several aspects were evaluated, considering various
datasets, the serial and OpenCL parallel implementations,

Table 5: Efficiency evaluation: runtime (in seconds) of the RL-Recommendation for different devices and datasets.
Algorithm Exec. Device Soccer [36] MPEG-7 [18] Brodatz [6] N-S Dataset [24]
Pairwise Recom. [28] Serial CPU 0.1149 ± 0.00018 0.3663 ± 0.00094 0.6672 ± 0.00140 14.802 ± 0.11059

RL-Recommendation Serial CPU 0.0607 ± 0.00000 0.1462 ± 0.00021 0.1108 ± 0.00102 0.1868 ± 0.00018

RL-Recommendation Parallel GPU1 0.1380 ± 0.00642 0.1401 ± 0.00250 0.1004 ± 0.00412 0.0582 ± 0.00633

RL-Recommendation Parallel GPU2 0.1538 ± 0.01056 0.2438 ± 0.00371 0.2376 ± 0.00326 0.3754 ± 0.00604

RL-Recommendation Parallel CPU1 0.0131 ± 0.00100 0.0319 ± 0.00043 0.0299 ± 0.00129 0.1166 ± 0.00085

RL-Recommendation Parallel CPU2 0.0128 ± 0.00104 0.0290 ± 0.00075 0.0284 ± 0.00114 0.1149 ± 0.00055

Memory Transfer Model: 1Write Buffer; 2Map Buffer.

OpenCL
CPU

OpenCL
GPU

Serial

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

Run time (s)

Run time comparison for different devices on the MPEG7 dataset

Figure 6: Runtime comparison on the
MPEG-7 [18] dataset.

OpenCL
GPU

OpenCL
CPU

Serial

0 0.05 0.1 0.15 0.2

Run time (s)

Run time comparison for different devices on the N-S dataset

Figure 7: Runtime comparison on the
N-S [24] dataset.

RL-Recom.
Parallel CPU

RL-Recom.
Parallel GPU

RL-Recom.
Serial

Pairwise Recom.
Serial

RL-Sim
Parallel

RL-Sim
Serial

 1 10

Run time (ms)

General run time comparison on MPEG-7 (logarithmic scale)

Figure 8: General runtime comparison
on the MPEG-7 [18] dataset.

Table 6: Comparison of post-processing methods on the MPEG-
7 [18] dataset - Bull’s Eye Score (Recall@40).

Shape Descriptors
DDGM [35] - 80.03%
CFD [27] - 84.43%
IDSC [19] - 85.40%
SC [5] - 86.80%
ASC [20] - 88.39%
AIR [12] - 93.67%

Post-Processing Methods
Algorithm Descriptor(s) Score
Locally C. Diffusion Process [38] IDSC 93.32%
Shortest Path Propagation [37] IDSC 93.35%
Mutual kNN Graph [16] IDSC 93.40%
RL-Sim [29] CFD 94.13%
RL-Recommendation CFD 94.38%
RL-Recommendation ASC 94.40%
Locally C. Diffusion Process [38] ASC 95.96%
Self-Smoothing Operator [15] SC+IDSC 97.64%
Co-Transduction [4] SC+IDSC 97.72%
Self-Smoothing Operator [15] SC+IDSC+DDGM 99.20%
Pairwise Recommendation [28] CFD+IDSC 99.52%
RL-Recommendation AIR 99.78%
Tensor Product Graph [39] AIR 99.99%

different devices (CPU, GPU), and memory transfer mod-
els. The reported results do not consider the OpenCL build
and environment time, since the build can be executed once
off-line and the environment time is constant independently
of dataset sizes. We also present a comparison with other
two unsupervised learning algorithms: the Pairwise Recom-
mendation [28] and the RL-Sim algorithms [29, 31].

Table 5 presents the average run time and confidence in-
tervals for the RL-Recommendation algorithm considering
different criteria. For comparison, the run time for the Pair-
wise Recommendation [28] algorithm is also reported. The
best performance for each dataset is highlighted in bold-
face. As we can observe, the performance results of the RL-
Recommendation are very superior to the Pairwise Recom-
mendation [28] algorithm. Considering only the serial execu-
tions, the RL-Recommendation is up to 79.3× faster, for the
N-S [24] dataset. Considering the parallel implementations,
the results are still more significant. The speedup obtained
over the serial implementation ranges from 3.2× (N-S [24]
dataset) to 5× (MPEG-7 [18] dataset). We can also observe
that the performance of Parallel GPU in comparison with

Parallel CPU increases according to size of the dataset, in-
dicating that GPU devices can be better exploited for large
amounts of computation. The overall run time for the whole
N-S [24] dataset (with 10,200 images) is only 0.0582s for the
Parallel GPU execution.

Figures 6 and 7 illustrate a comparison between the serial
and parallel implementations for the N-S [24] and MPEG-
7 [18] datasets, respectively. For the parallel implementa-
tions, different devices (CPU, GPU) are considered. Sig-
nificant performance were obtained by the parallel imple-
mentation. Figure 8 presents a more general comparison
of the RL-Recommendation (both serial and parallel) with
baselines. The run time of Pairwise Recommendation [28]
(serial) and the RL-Sim [29, 31] (serial and parallel) are re-
ported. The MPEG-7 [18] dataset was considered for the
experiment. Notice that, even using a logarithmic scale,
the run time of the proposed RL-Recommendation (in blue)
algorithm is significant smaller than other considered ap-
proaches.

4.5 Scalability Evaluation
This section evaluates the scalability of the proposed al-

gorithm. We conducted an experiment varying the size of
the ranked lists used as input and analyzing the behavior of
the algorithm. The size of the ranked lists is defined by the
constant L. Therefore, this constant defines an important
trade-off control between effectiveness and efficiency. The
ALOI [11] dataset and the LCH [23] descriptor were consid-
ered. We ranged the value of L from 70 to 7000, reporting
for the average time of the unsupervised distance learning
per ranked list. We also reported the same results for the
RL-Sim [13] algorithm, as a baseline.

Figure 9 shows the results. We can observe very
small average times for growing values of L for the RL-
Recommendation Algorithm. This behavior enables the use
of the algorithm in different datasets of any sizes, demon-
strating its scalability characteristics. Even larger values of
L were not considered because the effectiveness gains stabi-
lizes after certain values of L (discussion in Section 4.2).

5. CONCLUSIONS
In this paper, we have presented a novel unsupervised

0

2

4

6

8

10

0 1000 2000 3000 4000 5000 6000 7000

A
ve

ra
ge

 T
im

e
(m

s)

Size of Ranked Lists

Evolution of average time

RL-Sim Serial
RL-Recommendation Serial

RL-Recommendation Parallel

Figure 9: Scalability analysis: impact of size of ranked lists on
average time for the ALOI dataset [11].

learning algorithm for image retrieval tasks. The main mo-
tivation consists in exploiting information of ranked lists
for improving the effectiveness of CBIR tasks. The pro-
posed approach differs from previous works, as it consid-
ers at the same time effectiveness, efficiency, and scalabil-
ity issues. In addition to the significant effectiveness gains,
the algorithm requires low computation efforts, presenting
very positive efficiency and scalability properties. We have
also exploited parallel computing for heterogeneous envi-
ronments. We have conducted a large set of experiments
on various public datasets and several descriptors. The re-
sults and comparisons with other recent state-of-the-art ap-
proaches demonstrate the effectiveness and efficiency of the
proposed method. Future work includes the use of the pro-
posed method for combining different descriptors and differ-
ent modalities (e.g., visual and textual descriptors).

6. ACKNOWLEDGMENTS
The authors are grateful to São Paulo Research Foundation -

FAPESP (grants 2013/08645-0, 2014/04220-8, and 2013/50169-
1), CNPq (grants 306580/2012-8 and 484254/2012-0), CAPES,
AMD, and Microsoft Research.

7. REFERENCES
[1] J. Almeida, R. da S. Torres, and N. J. Leite. BP-tree: An

efficient index for similarity search in high-dimensional metric
spaces. In CIKM, pages 1365–1368, 2010.

[2] J. Almeida, D. C. G. Pedronette, and O. A. B. Penatti.
Unsupervised manifold learning for video genre retrieval. In
CIARP, pages 604–612, 2014.

[3] N. Arica and F. T. Y. Vural. BAS: a perceptual shape
descriptor based on the beam angle statistics. Pattern
Recognition Letters, 24(9-10):1627–1639, 2003.

[4] X. Bai, B. Wang, X. Wang, W. Liu, and Z. Tu. Co-transduction
for shape retrieval. In ECCV, volume 3, pages 328–341, 2010.

[5] S. Belongie, J. Malik, and J. Puzicha. Shape matching and
object recognition using shape contexts. PAMI, 24(4):509–522,
2002.

[6] P. Brodatz. Textures: A Photographic Album for Artists and
Designers. Dover, 1966.

[7] S. A. Chatzichristofis and Y. S. Boutalis. Cedd: color and edge
directivity descriptor: a compact descriptor for image indexing
and retrieval. In ICVS, pages 312–322, 2008.

[8] S. A. Chatzichristofis and Y. S. Boutalis. Fcth: Fuzzy color and
texture histogram - a low level feature for accurate image
retrieval. In WIAMIS, pages 191–196, 2008.

[9] R. da S. Torres and A. X. Falcão. Content-Based Image
Retrieval: Theory and Applications. Revista de Informática
Teórica e Aplicada, 13(2):161–185, 2006.

[10] R. da S. Torres and A. X. Falcão. Contour Salience Descriptors
for Effective Image Retrieval and Analysis. Image and Vision
Computing, 25(1):3–13, 2007.

[11] J.-M. Geusebroek, G. J. Burghouts, and A. W. M. Smeulders.
The amsterdam library of object images. International Journal
of Computer Vision, 61(1):103–112, 2005.

[12] R. Gopalan, P. Turaga, and R. Chellappa.
Articulation-invariant representation of non-planar shapes. In
ECCV, volume 3, pages 286–299, 2010.

[13] D. C. Guimarães Pedronette, J. Almeida, and R. Da S. Torres.
A scalable re-ranking method for content-based image retrieval.
Information Sciences, 265:91–104, May 2014.

[14] J. Huang, S. R. Kumar, M. Mitra, W.-J. Zhu, and R. Zabih.
Image indexing using color correlograms. In CVPR, pages
762–768, 1997.

[15] J. Jiang, B. Wang, and Z. Tu. Unsupervised metric learning by
self-smoothing operator. In ICCV, pages 794–801, 2011.

[16] P. Kontschieder, M. Donoser, and H. Bischof. Beyond pairwise
shape similarity analysis. In ACCV, pages 655–666, 2009.

[17] V. Kovalev and S. Volmer. Color co-occurence descriptors for
querying-by-example. In ICMM, page 32, 1998.

[18] L. J. Latecki, R. Lakmper, and U. Eckhardt. Shape descriptors
for non-rigid shapes with a single closed contour. In CVPR,
pages 424–429, 2000.

[19] H. Ling and D. W. Jacobs. Shape classification using the
inner-distance. PAMI, 29(2):286–299, 2007.

[20] H. Ling, X. Yang, and L. J. Latecki. Balancing deformability
and discriminability for shape matching. In ECCV, volume 3,
pages 411–424, 2010.

[21] Y. Liu, D. Zhang, G. Lu, and W.-Y. Ma. A survey of
content-based image retrieval with high-level semantics.
Pattern Recognition, 40(1):262 – 282, 2007.

[22] D. Lowe. Object recognition from local scale-invariant features.
In ICCV, pages 1150–1157, 1999.

[23] H. Lu, B. Ooi, and K. Tan. Efficient image retrieval by color
contents. In ADB, pages 95–108, 1994.

[24] D. Nistér and H. Stewénius. Scalable recognition with a
vocabulary tree. In CVPR, volume 2, pages 2161–2168, 2006.

[25] T. Ojala, M. Pietikäinen, and T. Mäenpää. Multiresolution
gray-scale and rotation invariant texture classification with
local binary patterns. PAMI, 24(7):971–987, 2002.

[26] G. Pass, R. Zabih, and J. Miller. Comparing images using color
coherence vectors. In ACM-MM, pages 65–73, 1996.

[27] D. C. G. Pedronette and R. da S. Torres. Shape retrieval using
contour features and distance optmization. In VISAPP,
volume 1, pages 197 – 202, 2010.

[28] D. C. G. Pedronette and R. da S. Torres. Exploiting pairwise
recommendation and clustering strategies for image re-ranking.
Information Sciences, 207:19–34, 2012.

[29] D. C. G. Pedronette and R. da S. Torres. Image re-ranking and
rank aggregation based on similarity of ranked lists. Pattern
Recognition, 46(8):2350–2360, 2013.

[30] D. C. G. Pedronette, R. da S. Torres, E. Borin, and
M. Breternitz. Efficient image re-ranking computation on
GPUs. In ISPA, 2012.

[31] D. C. G. Pedronette, R. da S. Torres, E. Borin, and
M. Breternitz. Rl-sim algorithm acceleration on GPUs. In
SBAC, 2013.

[32] R. O. Stehling, M. A. Nascimento, and A. X. Falcão. A compact
and efficient image retrieval approach based on border/interior
pixel classification. In CIKM, pages 102–109, 2002.

[33] M. J. Swain and D. H. Ballard. Color indexing. International
Journal on Computer Vision, 7(1):11–32, 1991.

[34] B. Tao and B. W. Dickinson. Texture recognition and image
retrieval using gradient indexing. JVCIR, 11(3):327–342, 2000.

[35] Z. Tu and A. L. Yuille. Shape matching and recognition - using
generative models and informative features. In ECCV, pages
195–209, 2004.

[36] J. van de Weijer and C. Schmid. Coloring local feature
extraction. In ECCV.

[37] J. Wang, Y. Li, X. Bai, Y. Zhang, C. Wang, and N. Tang.
Learning context-sensitive similarity by shortest path
propagation. Pattern Recognition, 44(10-11):2367–2374, 2011.

[38] X. Yang, S. Koknar-Tezel, and L. J. Latecki. Locally
constrained diffusion process on locally densified distance
spaces with applications to shape retrieval. In CVPR, pages
357–364, 2009.

[39] X. Yang, L. Prasad, and L. Latecki. Affinity learning with
diffusion on tensor product graph. PAMI, PP(99):1, 2012.

[40] K. Zagoris, S. Chatzichristofis, N. Papamarkos, and
Y. Boutalis. Automatic image annotation and retrieval using
the joint composite descriptor. In PCI, pages 143–147, 2010.

