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ABSTRACT
The evolution of technologies to store and share images has made
imperative the need for methods to index and retrieve multimedia
information based on visual content. The CBIR (Content-Based
Image Retrieval) systems are the main solution in this scenario.
Originally, these systems were solely based on the use of low-level
visual features, but evolved through the years in order to incorpo-
rate various supervised learning techniques. More recently, unsu-
pervised learning methods have been showing promising results for
improving the effectiveness of retrieval results. However, given the
development of different methods, a challenging task consists in to
exploit the advantages of diverse approaches. As different methods
present distinct results even for the same dataset and set of features,
a promising approach is to combine these methods. In this work, a
framework is proposed aiming at selecting the best combination
of methods in a given scenario, using different strategies based on
effectiveness and correlation measures. Regarding the experimental
evaluation, six distinct unsupervised learning methods and two
different datasets were used. The results as a whole are promising
and also reveal good perspectives for future works.

CCS CONCEPTS
• Information systems → Multimedia and multimodal re-
trieval;

KEYWORDS
content-based image retrieval; unsupervised learning; re-ranking;
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1 INTRODUCTION
Due to the continuously and consistent technological advances in
the late years, the development of approaches to index and retrieve
information has become indispensable, specially for images and
visual contents. Content-based image retrieval tasks are of extreme
importance, with different applications available [1] (diagnosis of
diseases, facial recognition, remote sensing, object identification,
and others). The CBIR (Content-Based Image Retrieval) systems
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are the main solution for retrieval based on visual content. The
main objective of these systems consists in, given a query image,
retrieve the most similar images of the dataset in a descending
order of similarity. For a given image, its features can be extracted
by a visual descriptor. These descriptors extract feature vectors
and, subsequently, compute the distance between images [2]. Dif-
ferent approaches have been exploited by diverse visual descriptors:
global (color, texture, shape) [3, 4], local [5], and deep learning [6].
However, this strategy has an intrinsic problem related to its repre-
sentation, that considers low-level features instead of the semantic
content, deepening the well-known semantic gap problem [7].

As an approach to reduce the semantic gap impact, supervised
learning methods have been included in the retrieval pipeline. How-
ever, in some scenarios, the use of supervised methods are limited
due to the requirement of training procedures and labeled data.
Recently, unsupervised learning methods have been proposed, sub-
stituting pairwise measures by global affinity ones [8–10].

The results of unsupervised learning methods have been very
promising, mainly in effectiveness aspects. In order to further im-
prove the accuracy, approaches to aggregate complementary results
of distinct retrieval methods have been proposed [11]. Since differ-
ent methods present distinct and often complementary results for
a same dataset, an interesting strategy is to perform a combination
of such methods. However, the selection of the best combination
strongly depends on the dataset and descriptors being used. Some
recent works present approaches to select and combine methods
using supervised techniques [12] and genetic algorithms [13].

In this work, we present an investigation which aims to deter-
mine if the best combination of unsupervised learning methods can
also be selected in an unsupervised way, without utilizing training
data or supervised approaches. To perform the analysis, different
effectiveness and correlation measures were used to compose a
selection strategy, which aims at defining the best combination in a
given retrieval scenario. The experiments were conducted using six
distinct unsupervised learning methods and two different datasets.
In most cases, the results have shown that the best combinations
can be selected using our presented approach, indicating promising
results.

This paper is organized as follows: Section 2 discusses related
work. Section 3 presents the formulation of the image retrieval
model considered, while Section 4 presents the proposed selection
framework. Section 5 reports the experimental evaluation results.
Finally, Section 6 draws the conclusions of this work.

2 RELATEDWORK
Unsupervised learning methods have been proposed [8, 14] aim-
ing at minimizing the semantic gap impact through contextual
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analysis. The main idea of these post-processing methods is to re-
place pairwise measures by global affinity values capable of taking
into account the dataset manifold [15]. In the literature, different
unsupervised learning methods can be found based on different ap-
proaches: diffusion processes [16, 17], graphs [8, 15], clustering [18],
frequency of patterns [19], rank-analysis [20], and others.

Over the recent years, unsupervised learning methods based
on rank-analysis have been achieving high and promising effec-
tiveness results. Additionally, these methods require low computa-
tional efforts, since they do not need all the positions of the ranked
lists [10, 21–23] to perform an execution. This research considers
six different unsupervised learning methods: ContextRR [9], Carte-
sian Product of Ranking References (CPRR) [21], Ranked List Graph
Distance [23], ReckNNGraph [22], RL-Recommmendation [10], and
RL-Sim* [24, 25]. The methods have results comparable with the
state-of-the-art and are based on rank-analysis, but use distinct tech-
niques (graphs, Cartesian product, recommendations, and others).
All of them are open-source and public available [26].

Different retrieval methods are capable of providing distinct in-
formation about a given dataset. Therefore, several unsupervised
learning methods, specially the ones based on rank-analysis, use
rank-aggregation approaches for exploiting such complementar-
ity. A rank-aggregation method consists in an algorithm that re-
ceives two or more different inputs provided by distinct retrieval
methods, with the purpose of aggregate complementary informa-
tion to achieve more effective results [27]. In most cases, the rank-
aggregation is seen as a way to create consensual ranked lists [28].
The aggregation exploits information of different ranked lists. For
example, if an image appears in the top positions of two different
ranked lists, it is inferred that this image must be placed in the
top positions. Different approaches have been presented with this
objective, among which we can cite genetic programming, support
vector machines (SVM), and association rules [11, 29]. Strategies
to combine multiple heterogeneous methods for image retrieval in
annotated collections have also been proposed [12].

Considering the promising gains obtained for the unsupervised
learning methods, models to perform the combinations of these
methods have been proposed [30]. In the same way that descrip-
tors can have their results aggregated, the same can be done with
the output of unsupervised learning methods. Recently, a frame-
work that combines different methods using distinct supervised
approaches and genetic algorithms has been proposed [13].

3 IMAGE RETRIEVAL MODEL
This section formally describes the retrieval model used along
this paper. Let C={imд1, imд2, . . . , imдn } be an image collection
(dataset), where n denotes the collection size.

Let D be an image descriptor, which can be defined as a tuple
(ϵ, ρ), where Î → Rm is a function that extracts the feature vector
v Î of a given image in Î ; and ρ: Rm × Rm → R is a distance
function that provides the distance between two images according
to their corresponding feature vectors. The distance between two
images imдi and imдj is given by the value of ρ(ϵ(imдi ), ϵ(imдj )).
For readability purposes, the notation ρ(i, j) is used to denote the
distance between two images.

The distance ρ(i, j) between all images imдi , imдj ∈ C can be
computed to obtain a square distance matrix A, such that Ai j =
ρ(i, j). The matrix A is used as the input for the majority of the
unsupervised learning methods.

An alternative representation of the retrieval results is the ranked
lists. Based on the distance function ρ, a ranked list can be computed
for a query image imдq . A ranked list can contain information of
the whole dataset; but, since the most important information is
available at the top positions, a generally adopted strategy is to
consider only a subset of the top-L positions, which contains the
L most similar images to the given query image. This is an useful
approach used to accelerate the retrieval process, since L ≪ N for
larger datasets.

Therefore, the ranked list τq=(imд1, imд2, . . . , imдL) can be de-
fined as a permutation of an image collection Cs ⊂ C, which con-
tains the most similar images to a given query image imдq , such
that |Cs | = L. The permutation τq is a bijection from the set Cs onto
the set [L] = {1, 2, . . . ,L}. For a permutation τq , the τq (i) notation
denotes the position (or rank) of image imдi in the ranked list τq .
We can say that, if image imдi is ranked before image imдj in the
ranked list of image imдq , that is, τq (i) < τq (j), then ρ(q, i) ≤ ρ(q, j).
Taking every image imдi ∈ C as a query image imдq , the set of
ranked lists R = {τ1,τ2, . . . , τn } is obtained.

In general, unsupervised learning methods consider as input
a distance matrix A or a set of ranked lists R and perform the
execution to provide a more effective set of ranked lists Rf as
output. Aggregation occurs when a method receives as input two
or more distance matrices A or ranked lists R and provides a single
set of ranked lists Rf a as output.

4 PROPOSED SELECTION FRAMEWORK
The most effective combinations of retrieval methods occur when
the inputs being combined present high effectiveness results and
are complementary to each other. Our proposed framework consists
in the use of both effectiveness and correlation measures aiming at
selecting the best methods to be combined. Figure 1 illustrates the
main steps of the proposed framework, which are identified by the
black circles and described in the following subsections.
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Figure 1: The proposed selection framework.
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4.1 Effectiveness Measures
Effectiveness results are computed for all the available methods
and are used to estimate the accuracy of the results. In this work,
two effectiveness measures are considered.

4.1.1 Precision. In the image retrieval scenario, the precision
is defined as Pn = c/n, where n is the number of retrieved images
and c is the number of relevant images retrieved. The precision
is computed for all the ranked lists and the arithmetic mean is
subsequently calculated.

4.1.2 Mean Average Precision (MAP). The MAP value is pro-
vided by the arithmetic mean of the Average Precisions (AP) com-
puted for all the ranked lists. Let q be a query item and let Nr be
the number of relevant items in a collection for a given query q. Let
⟨ri |i = 1, 2, . . . ,d⟩ be a ranked relevance vector of depth d , where ri
indicates the relevance of the ith ranked document scored as either
0 (not relevant) or 1 (relevant), the AP is defined in the Equation 1.

AP =
1
Nr

d∑
i=1

(
ri
i

i∑
j=1

r j

)
(1)

4.2 Correlation Measures
Correlation measures are computed for all the possible pairs of
methods aiming at determining the less correlated results, which
have more potential for combination. This is performed calculating
the correlation for all the ranked lists available. Let two ranked
lists τi and τj , a similarity value is computed in the interval [0, 1].
The higher the value, the higher the similarity of the lists. Three
different correlation measures are considered in this work.

4.2.1 Jaccard. The Jaccard index is a statistic measure that com-
putes the correlation between two ranked lists and is defined as
shown in the Equation 2.

J (τi ,τj ) =
|τi ∩ τj |

|τi ∪ τj |
(2)

In this case, the idea is to offer a similarity score based on the
number of elements in common of two ranked lists.

4.2.2 Kendall Tau. Given two ranked lists, the measure com-
putes the number of discordant pairs between them. Let the image
pair (imдx , imдy ) and two ranked lists τi and τj . If τi (x) > τj (y) and
τi (y) > τj (x), the pair (imдx , imдy ) is a discordant pair regarding
τi and τj .

Let Kd be the number of discordant pairs (Kendall Tau distance)
and n be the size of these lists. To obtain a similarity score in the
interval [0, 1] (Ks ), the following operation is performed.

Ks (τi ,τj ) = 1 −
Kd (τi ,τj )

nd
, where nd =

n × (n − 1)
2

(3)

4.2.3 Spearman. The Spearman similarity considers the differ-
ence between the position of an image in two ranked lists. Let τi
and τj be two ranked lists and let n be the size of these lists, the
Spearman similarity is defined by the Equation 4.

S(τi ,τj ) = 1 −
∑
imдx ∈τi |τi (x) − τj (x)|

n × (n + 1)
(4)

4.3 Selection Strategy
Given a set of retrieval methods, a selection strategy aims to distin-
guish among high and low-effective combinations. In this work, a
score is proposed to estimate the quality of a combination among
the possibilities available. Each combination considers a pair of
retrieval methods.

LetUL1 andUL2 be two different unsupervised learning meth-
ods, the measure provides a score based on the output results of the
methods. The first hypothesis is that a good combination is given by
twomethods with high effectiveness results. LetMef f be a selection
measure and e f f (UL) be a function that returns the effectiveness
of a methodUL. Equation 5 summarizes this reasoning.

Mef f (UL1,UL2) = 1 + e f f (UL1) × e f f (UL2) (5)
Another hypothesis is to consider that the best results are pro-

vided by the combination of methods that offer highly complemen-
tary results. LetMcor be a selection measure and cor (UL1,UL2) be
a function that returns the correlation value of two ranked lists
of two different unsupervised learning methods. The selection by
correlation measure is computed as follows.

Mcor (UL1,UL2) =
1

1 + cor (UL1,UL2)
(6)

In order to combine the two previously presented hypotheses, a
final selection measureMsel is defined considering both effective-
ness and correlation, like is shown in the Equation 7.

Msel (UL1,UL2) = (Mef f )
α × (Mcor )

β (7)
The coefficients α and β are used aiming at applying different

weights for each one of the considered measures.

4.4 Aggregation Method
In this paper, the term aggregation refers to an execution where
a method receives more than one input providing a single output.
Originally, the idea of aggregation is to combine complementary
results offered by image descriptors [11]. However, this idea can also
be applied to aggregate complementary information of different
unsupervised learningmethods. Figure 2 illustrates the combination
model described.

 Image
 Descriptor

ε() 
ρ()

 Unsupervised 
Learning 

Method (2)

Unsupervised Learning
Method (Aggregator)

 Unsupervised 
Learning 

Method (1)

Figure 2: Aggregation method workflow.

Initially, a descriptor extracts the features from images and com-
putes the distances between them, providing retrieval results for
two different unsupervised learning methods. These methods out-
put two ranked lists that are used together as the input of a third
method called aggregator. The higher the complementarity of the
outputs (1) and (2), better the output result of the aggregator. The
aggregator can be one of the methods previously considered (1 and
2) or any other method. In this work, the method that achieved the
best isolated effectiveness result was considered as aggregator.
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Figure 3: Selection results comparing three different correlation measures on the MPEG-7 dataset.

5 EXPERIMENTAL EVALUATION
This section describes the experimental evaluation conducted in or-
der to assess the effectiveness of the proposed approach. Section 5.1
discusses the experimental protocol and Section 5.2 presents the
obtained results.

5.1 Experimental Protocol
Two different datasets were considered in the experiments as shown
by Table 1. We used the descriptors that achieved the higher ef-
fectiveness values for each dataset and do not offer saturated re-
sults. A comparison among descriptors can be found in the litera-
ture [9, 10, 21–25]. The number of images per class of each dataset
was considered as the depth to compute the precision and correla-
tion measures.
Table 1: Datasets and descriptors used in the evaluation.
Dataset Descriptor Description

Brodatz [31] LAS (Local Activity Spectrum) [32] Composed of 1776 images of 111 distinct
textures divided into 16 blocks.

MPEG-7 [33] ASC (Aspect Shape Context) [34] A popular dataset composed of 1400
shapes divided into 70 classes.

A briefly description of the unsupervised learning methods used
is presented in the Table 2. The combined methods are identified
by mnemonics.

Table 2: Unsupervised methods used in the evaluation.
Name (Mnemonic) Description
ContextRR (CX) [9] Based on contextual information extracted from ranked lists, a

more effective distance measure is computed.
CPRR (CP) [21] Perform Cartesian product operations in kNN and reverse kNN

neighborhood sets obtained from the ranked lists.
Ranked List Graph Distance (RG) [23] Each ranked list is represented as aweighted sub-graph based on

its top-k positions. The weight of the edges is used to increment
the similarity scores between images.

ReckNNGraph (RN) [22] A graph considering the reciprocal references in the top-k posi-
tions of the ranked lists is built. The graph structure is exploited
through scores in order to analyze the dataset.

RL-Recommmendation (RC) [10] Similarity information available in the ranked lists can be used
to recommend images among themselves.

RL-Sim* (RS) [24, 25] If two images are similar, their ranked lists should also be similar.
Therefore, the distance between them is decreased.

It is expected that, higher the value provided by the selection
measure, higher the effectiveness of the combination result. There-
fore, graphs were built, where each point represents a different
combination of methods. The final effectiveness value provided by
the combination is evaluated using the MAP. The top and bottom
lines indicate the highest and lowest isolated values, respectively.
If a combination has an effectiveness value that is lower than one
of the combined methods, the point is represented by an upside

down red triangle. Otherwise, the combination is represented by
an upside up green triangle. High-effective combination results are
expected to produce points in the right-top side.

5.2 Experimental Results
Figure 3 presents three graphs for the MPEG-7 dataset considering
different correlation measures. In this experiment, the effectiveness
measures were not used (α = 0). As can be noticed, the correlation
by itself is not able to properly estimate the best and the worst
combinations. The three measures are comparable, since the com-
binations selected as best and worst are the same. However, the
Jaccard index seems to be slightly better than the others, once it
places the best result (RN+RC) in the most right position among the
graphs. Therefore, for the remaining experiments, we considered
the Jaccard index as the default correlation measure.

The selection measure is evaluated considering different param-
eters (weights) for effectiveness and correlation. Figure 4 illustrates
six different graphs, each row presents three graphs for a differ-
ent dataset. The leftmost graphs consider the same value for the
coefficients (α = β = 1). These parameters have not achieved the
best results, although several upside up green triangles indicate the
effectiveness potential of combinations. Another hypothesis is that
the effectiveness by itself is able to provide a better estimation than
the previous approaches. As an indication, good results can be seen
in the middle graphs (α = 1, β = 0). However, the results can be
further improved by incorporating correlation information. The
results can be seen in the rightmost graphs which consider both
effectiveness and correlation with double weight for effectiveness
(α = 2, β = 1).

For comparison purposes, the same experiments were repro-
duced changing e f f from precision to MAP and are presented by
Figure 5. Although the results show that the effectiveness mea-
sures are comparable, the MAP has presented a negative impact for
the MPEG-7 dataset, since the best combination is not in the most
right-top position like in the results obtained considering precision.

In order to illustrate the visual results of the combinations com-
pared with the original descriptor and isolated methods, Figure 6
shows a ranked list example for the ReckNNGraph + RL-Recom com-
bination, which presented the best result compared to the available
methods. The query images are illustrated in green borders and the
incorrect images in red borders. An incremental and noticeable gain
can be seen from the descriptor until reaching the combination.
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Figure 4: Selection results comparing different weights for effectiveness and correlation (α and β) using e f f = Precision.
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Figure 5: Selection results comparing different weights for effectiveness and correlation (α and β) using e f f = MAP .
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Figure 6: Example of image retrieval results for the MPEG-7 dataset showing the impact of the method combination.

6 CONCLUSIONS
In this paper, a strategy to select and aggregate combinations of
unsupervised learning methods for image retrieval was presented.
The results demonstrated that the best combination can be selected
using an approach that combines correlation and effectiveness mea-
sures. Although the correlation measures are unsupervised, the
effectiveness measures use labeled data. As future work, we intend
to use unsupervised effectiveness estimations instead, allowing the
selection to be performed in a fully unsupervised way. Another way
to expand the evaluation is to combine not only pairs of methods,
but larger sets. We also intend to evaluate combinations in other
multimedia scenarios (audio, video, and others).
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